Derivative Calculation I

- Automatic differentiation (AD) is a method to calculate the derivatives
- In this set of slides, we will introduce the two modes of automatic differentiation: forward mode and reverse mode
- Most materials in this section are from Baydin et al. (2018)
- We consider the same example function

$$
f\left(x_{1}, x_{2}\right)=\log x_{1}+x_{1} x_{2}-\sin x_{2}
$$

Forward Mode of AD I

- The following table demonstrates the forward calculation of $f(2,5)$

$$
\left\lvert\, \begin{array}{lll}
x_{1} & =2 \\
x_{2} & =5 \\
\hline v_{1}=\log x_{1} & =\log 2 \\
v_{2}=x_{1} \times x_{2} & =2 \times 5 \\
v_{3}=\sin x_{2} & =\sin 5 \\
v_{4}=v_{1}+v_{2} & =0.693+10 \\
v_{5}=v_{4}-v_{3} & =10.693+0.959 \\
\hline y=v_{5} & =11.652
\end{array}\right.
$$

Forward Mode of AD II

- Variables x_{1} and x_{2} are the input nodes
- Each $v_{i}, i=1,2,3, \ldots$, is related to a simple operation
- As shown in the table, a sequence of simple operations leads to the function evaluation
- The table corresponds to the following computational graph

Forward Mode of AD III

Forward Mode of AD IV

- For example, x_{1} is used in calculating v_{1} and v_{2}. So x_{1} has two links to other nodes
- This computational graph tells us the dependencies of variables
- Remember we would like to calculate the derivative
- In particular, we check the partial derivative with respect to x_{1}

$$
\frac{\partial y}{\partial x_{1}}=\frac{\partial v_{5}}{\partial x_{1}}
$$

Forward Mode of AD V

- Here, for any variable v, we denote

$$
\dot{v}=\frac{\partial v}{\partial x_{1}}
$$

- We will explain that using the chain rule can give us the following forward derivative calculation

Forward Mode of AD VI

$$
\left\lvert\, \begin{array}{rll}
\dot{x}_{1}=\partial x_{1} / \partial x_{1} & =1 \\
\dot{x}_{2}=\partial x_{2} / \partial x_{1} & =0 \\
\hline \dot{v}_{1}=\dot{x}_{1} / x_{1} & & =1 / 2 \\
\dot{v}_{2} & =\dot{x}_{1} \times x_{2}+\dot{x}_{2} \times x_{1} & =1 \times 5+0 \times 2 \\
\dot{v}_{3} & =\dot{x}_{2} \times \cos x_{2} & \\
\dot{v}_{4} & =\dot{v}_{1}+\dot{v}_{2} & \\
\dot{v}_{5} & =\dot{v}_{4}-\dot{v}_{3} & \\
\hline \dot{y}=5.5+5 \\
\hline \dot{y} & =\dot{v}_{5} &
\end{array}\right.
$$

- The table starts from $\dot{x}_{1}=1$ and $\dot{x}_{2}=0$
- Based on \dot{x}_{1} and \dot{x}_{2}, we can calculate other values

Forward Mode of AD VII

- For example,

$$
\begin{gathered}
v_{1}=\log x_{1} \\
\frac{\partial v_{1}}{\partial x_{1}}=\frac{\partial\left(\log x_{1}\right)}{\partial x_{1}} \times \frac{\partial x_{1}}{\partial x_{1}} \\
=\frac{1}{x_{1}} \times \frac{\partial x_{1}}{\partial x_{1}}=\frac{\dot{x}_{1}}{x_{1}}
\end{gathered}
$$

- Clearly, the chain rule plays an important role here. The calculation of other \dot{v}_{i} is similar

Reverse Mode of AD I

- Next we discuss the reverse mode of automatic differentiation
- We denote

$$
\bar{v}=\frac{\partial y}{\partial v}
$$

- Note that earlier, in the forward mode, we considered

$$
\dot{v}=\frac{\partial v}{\partial x_{1}}
$$

so the focus is on the derivatives of all variables with respect ot one input variable

Reverse Mode of AD II

- In contrast, the reverse mode focuses on the partial derivative of one output with respect to all variables
- Here, we illustrate the calculation of

$$
\frac{\partial y}{\partial x_{2}}=\bar{x}_{2}
$$

- By checking the variable x_{2} in the computational graph, we see that variable x_{2} affects y by affecting v_{2} and v_{3}

Reverse Mode of AD III

\longrightarrow forward calculation of function value
$\leftarrow-$-- reverse calculation of derivative value

Reverse Mode of AD IV

- By the chain rule, we have

$$
\frac{\partial y}{\partial x_{2}}=\frac{\partial y}{\partial v_{2}} \frac{\partial v_{2}}{\partial x_{2}}+\frac{\partial y}{\partial v_{3}} \frac{\partial v_{3}}{\partial x_{2}}
$$

or

$$
\bar{x}_{2}=\bar{v}_{2} \frac{\partial v_{2}}{\partial x_{2}}+\bar{v}_{3} \frac{\partial v_{3}}{\partial x_{2}}
$$

- Assume that \bar{v}_{2} and \bar{v}_{3} have been available
- Then we need to calculate

$$
\frac{\partial v_{2}}{\partial x_{2}} \text { and } \frac{\partial v_{3}}{\partial x_{2}}
$$

Reverse Mode of AD V

- From the relation $v_{3}=\sin x_{2}$, we know

$$
\frac{\partial v_{3}}{\partial x_{2}}=\cos \left(x_{2}\right) .
$$

Similarly, from $v_{2}=x_{1} \times x_{2}$, we have

$$
\frac{\partial v_{2}}{\partial x_{2}}=x_{1}
$$

Reverse Mode of AD VI

- Then the evaluation of \bar{x}_{2} is done in two steps:

$$
\begin{aligned}
& \bar{x}_{2} \leftarrow \bar{v}_{3} \frac{\partial v_{3}}{\partial x_{2}} \\
& \bar{x}_{2} \leftarrow \bar{x}_{2}+\bar{v}_{2} \frac{\partial v_{2}}{\partial x_{2}}
\end{aligned}
$$

- These steps are part of the sequence of a reverse traversal, shown in the following table

Reverse Mode of AD VII

$$
\left\{\begin{array}{llll}
\bar{x}_{1} & =\bar{x}_{1} & & =5.5 \\
\bar{x}_{2} & =\bar{x}_{2} & & =1.716 \\
\hline \bar{x}_{1} & =\bar{x}_{1}+\bar{v}_{1} \frac{\partial v_{1}}{\partial x_{1}} & =\bar{x}_{1}+\bar{v}_{1} / x_{1} & =5.5 \\
\bar{x}_{2} & =\bar{x}_{2}+\bar{v}_{2} \frac{\partial v_{2}}{\partial x_{2}} & =\bar{x}_{2}+\bar{v}_{2} \times x_{1} & =1.716 \\
\bar{x}_{1} & =\bar{v}_{2} \frac{\partial v_{2}}{\partial x_{1}} & =\bar{v}_{2} \times x_{2} & =5 \\
\bar{x}_{2} & =\bar{v}_{3} \frac{\partial v_{3}}{\partial x_{2}} & =\bar{v}_{3} \times \cos x_{2} & =-0.284 \\
\bar{v}_{2} & =\bar{v}_{4} \frac{\partial v_{4}}{\partial v_{2}} & =\bar{v}_{4} \times 1 & =1 \\
\bar{v}_{1}=\bar{v}_{4} \frac{\partial v_{4}}{\partial v_{1}} & =\bar{v}_{4} \times 1 & =1 \\
\bar{v}_{3}=\bar{v}_{5} \frac{\partial v_{5}}{\partial v_{3}} & =\bar{v}_{5} \times(-1) & =-1 \\
\bar{v}_{4} & =\bar{v}_{5} \frac{\partial v_{5}}{\partial v_{4}} & =\bar{v}_{5} \times 1 & =1 \\
\hline \bar{v}_{5}=\bar{y} & =1 &
\end{array}\right.
$$

Reverse Mode of AD VIII

- We begin with

$$
\bar{v}_{5}=\frac{\partial y}{\partial v_{5}}=\frac{\partial y}{\partial y}=1
$$

- By the sequence of a reverse traversal, in the end, we have

$$
\begin{aligned}
\frac{\partial y}{\partial x_{1}} & =\bar{x}_{1} \\
\frac{\partial y}{\partial x_{2}} & =\bar{x}_{2}
\end{aligned}
$$

Reverse Mode of AD IX

- As we mentioned earlier, the reverse mode can obtain the derivatives with respect to all variables at the same time

References I

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research, 18(153):1-43, 2018.

