
Outline

1 Network architecture

2 Transform blocks and other details

3 Masked self-attention

February 14, 2025 1 / 64



Network architecture

Outline

1 Network architecture

2 Transform blocks and other details

3 Masked self-attention

February 14, 2025 2 / 64



Network architecture

Network Design I

Recall that we hope to have a function f that can
efficiently calculate

f(θ;xi,1:1), . . . , f(θ;xi,1:j), . . .

as shown in the following figure.
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Network architecture

Network Design II

f(θ;xi,1:1) f(θ;xi,1:2) f(θ;xi,1:3) f(θ;xi,1:4)

xi,4xi,3xi,2xi,1

Figure 1: A sequence of next-token predictions
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Network architecture

Network Design III

The situation is similar to the least-square
approximation discussed earlier for time-series
prediction.

The difference is that instead of a linear function,
here we use a more complicated one.

Different types of neural networks can serve as our
f .

For example, we can modify convolutional networks
as the main component of our f .

See details in, for example, https:
//dlsyscourse.org/slides/transformers.pdf.
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Network architecture

Network Design IV

We will describe the most used network for LLMs:
transformer.

However, it is possible that in the future we can
develop better networks.
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Network architecture

Overall Architecture I

The architecture used by LLMs contains several
transformer blocks.

Transformer (Vaswani et al., 2017) is an effective
network for many applications.

The overall architecture of an LLM is as follows.
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Network architecture

Overall Architecture II

SoftMax: next token probability

↑
Linear layer

↑
Several transformer blocks

↑
Token + position embedding
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Network architecture

Overall Architecture III

We specifically discuss the architecture used in the
implementation in GPT-2-small (?). Their code is
at https://github.com/openai/gpt-2/blob/
master/src/model.py.

Similar architectures have been adopted in other
places, such as NanoGPT
(https://github.com/karpathy/nanoGPT).

Precisely, what GPT-2 does is the following network.
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Network architecture

Overall Architecture IV

Tokenized Text

Token and Positional

Embedding Layer

Dropout

Transformer Block
Repeat

Several Times

Final LayerNorm

Linear Output Layer
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Network architecture

Overall Architecture V

For the initialization of model weights, some
common ways are available. For example, we can
randomly draw values from normal distribution with
zero mean.
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Network architecture

Input and Embedding Vectors I

Now let us discuss the input of the network.

To begin, we assume that

each word (token) in our Vocabulary
corresponds to an embedding vector, and
each position of 1, . . . , T corresponds to an
embedding vector.

We then combine these two embedding vectors as
one vector.

Various ways are possible for the combination. For
example, we can concatenate the two vectors as a
longer one. Or we can sum up the two vectors.
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Network architecture

Input and Embedding Vectors II

Then x1:T becomes the following matrix.

x1
...
xT

 ...

 ∈ RT×d (1)

where d is the dimension of the embedding vector.

This matrix becomes the input of the architecture.

Up to now, it seems that we assume all documents
have the same length T .

Of course, this assumption is in general untrue.

What we do is:
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Network architecture

Input and Embedding Vectors III

if document length > T , use only the first T
tokens, and
if document length < T , we add “empty”
values after the end of the document.

The main reason of using a fixed document length is
for easily conducting operations.

Totally we have

|Vocabulary|
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Network architecture

Input and Embedding Vectors IV

vectors for word embedding, and

T

vectors for position embedding.

For each of the T words (tokens) in the document,
we extract

a word embedding vector

and

a position embedding vector.

All these embedding vectors are trainable
parameters.
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Transform blocks and other details

A Transformer Block I

For each transformer block, we let

Z be the input matrix, and
Zout be the output matrix.

We manage to have that

Zout ∈ RT×d

has the same dimensionality as Z.

By doing so, the output can be the input of the
next block.

We repeat this process for several blocks.
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Transform blocks and other details

A Transformer Block II

Typically a transformer block involves

a multi-head attention layer, and
feed-forward layers.

Usually, we surround each of the two components
with a normalization layer and a residual connection.
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Transform blocks and other details

A Transformer Block III

Thus the mathematical operations in a block are as
follows.

Z̃ = LayerNorm(Z) (2)

Z̃ ← Z + DropOut(MultiHead(Z̃)) (3)

Z̃ ← LayerNorm(Z̃) (4)

Zout = Z̃ + DropOut(GELU(Z̃W1)W2) (5)

Subsequently we discuss each operation in detail.
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Transform blocks and other details

A Transformer Block IV

Besides the attention layer in (3), what else in one
transform block may slightly vary across LLM
implementations.

Our operations in (2)-(5) can be illustrated in the
following figure.1
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Transform blocks and other details

A Transformer Block V

LayerNorm

Multi-head
Attention

Dropout

+

LayerNorm

Feed Forward

Dropout

+

In the figure, ⊕ means the residual connection,
which will be explained later.
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Transform blocks and other details

A Transformer Block VI

1Modified from
https://sebastianraschka.com/pdf/slides/2024-acm.pdf
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Transform blocks and other details

Transformer and Attention I

Eq. (3) is the core of a transformer block: a
multi-head self-attention layer.

We start with discussing single-head attention.

If the input matrix is

Z̃ ∈ RT×d,

the attention operation is

SoftMax(
Z̃WQW

T
K(Z̃)

T

√
d

)Z̃WV . (6)

February 14, 2025 23 / 64



Transform blocks and other details

Transformer and Attention II

We consider three trainable weight matrices

WQ ∈ Rd×d,WK ∈ Rd×d,WV ∈ Rd×d

to convert the input matrix Z̃ to

Z̃WQ ∈ RT×d, Z̃WK ∈ RT×d, Z̃WV ∈ RT×d.

In (6), we can combine WQW
T
K as one single weight

matrix.
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Transform blocks and other details

Transformer and Attention III

However, people still write them separately because
in more general situations, we may consider

WQ ∈ Rd×d′ and WK ∈ Rd×d′

with d′ < d. That is, WQW
T
K becomes a low-rank

approximation of the d× d weight matrix. Then we
need two matrices instead of one.

We will see this situation in multi-head attention.
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Transform blocks and other details

Transformer and Attention IV

In (6), the SoftMax function is applied on each row
z of an input matrix in the following way.

SoftMax(z) =


exp(z1)∑
j exp(zj)
...

exp(zT )∑
j exp(zj)

 . (7)

Let us briefly talk about the attention operation in
(6).
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Transform blocks and other details

Transformer and Attention V

If the SoftMax(·) part is not there, then (6) reduces
to

Z̃WV ,

which is no more than a feed-forward operation.

What

SoftMax(
Z̃WQW

T
K(Z̃)

T

√
d

)

give are weights for the T words in Z̃.

Thus in (6) we do a weighted average of words in Z̃.
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Transform blocks and other details

Transformer and Attention VI

The purpose is to transform the representation of
each word based on its relationship to other words
in the same document.

We do not get into details here because our focus is
not on explaining the attention mechanism.

In practice, we extend the single-head attention to
multi-head for capturing different types of
relationships between words in the document.
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Transform blocks and other details

Transformer and Attention VII

Specifically, we combine results of h heads:

Concat(head1, . . . , headh)WO, (8)

where

headi = SoftMax(
Z̃W i

Q(W
i
K)

T (Z̃)T
√
d

)Z̃W i
V ∈ RT×d/h.

(9)

Due to the use of h heads, we now have

W i
Q ∈ Rd×d/h,W i

K ∈ Rd×d/h,W i
V ∈ Rd×d/h. (10)
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Transform blocks and other details

Transformer and Attention VIII

Earlier we talked about if W i
Q(W

i
K)

T can become
just one matrix. We cannot do that here because
W i

Q and W i
K are no longer squared matrices.

In (8), Concat() is a function which concatenates
matrices together. That is,

Concat(head1, . . . , headh)

= [head1, . . . , headh] ∈ RT×d.

Another advantage of using multiple heads is that
the computations for headi, ∀i can be done in
parallel.
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Transform blocks and other details

Transformer and Attention IX

We further have in (8) that

WO ∈ Rd×d. (11)

The use of WO is like we have a linear layer after
concatenation.
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Transform blocks and other details

Layer Normalization I

First let us give the mathematical operations in (2)
and (4).

For any row z of the input matrix, the normalized
row is

Normalize(z) = a⊙ z −mean(z)

std(z)
+ b, (12)

where mean(·) and std(·) are the mean and
standard deviation, and ⊙ means the
component-wise product between two vectors.
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Transform blocks and other details

Layer Normalization II

In (12),
a ∈ Rd, b ∈ Rd

are learnable parameters shared across rows of the
input matrix.

The reason of applying layer normalization is to
avoid too large or too small gradient values.

In deep learning, we have operations across layers to
calculate the gradient.

Such a long sequence of operations may cause very
large or small values (think about the multiplication
of several numbers).
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Transform blocks and other details

Layer Normalization III

Several techniques are available to address this issue
of too large or too small gradient values, and layer
normalization is one of them.

As we can see, the normalization operation in (12)
avoids values being extreme.
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Transform blocks and other details

Residual Connections I

Residual connection is another technique to make
the problem of too small and too large gradient
values less serious.

It also improves the overall training stability.

The operation is simply to sum the input and
output of one (or several) neural network layer.

Usually we use the following flowchart to represent
residual connections:
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Transform blocks and other details

Residual Connections II

+

The residual connection can be applied to any
network layer with the same input/output
dimensionality.
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Transform blocks and other details

Dropout Operations I

Dropout is a technique to prevent overfitting in
neural networks.

From Srivastava et al. (2014), “the key idea is to
randomly drop units (along with their connections)
from the neural network during training.”

Under each mini-batch of the stochastic gradient
method, the “thinned” network is fixed so we can
do the sub-gradient calculation.

Thus, in different batches, the networks are slightly
different.

February 14, 2025 37 / 64



Transform blocks and other details

Dropout Operations II

It is like that we are doing an ensemble of several
networks.

Therefore, we need a rate p as the probability that a
neuron is retained.

In the prediction stage, we do not remove any
neurons or their connections.

Instead, we multiply every weight of the dropout
layer by the rate p.

In some places (e.g., PyTorch), p means the rate of
elements being removed.
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Transform blocks and other details

Dropout Operations III

Thus, in the prediction stage we should multiply
every weight of the dropout layer by 1− p.
Interestingly, what PyTorch does is to scale the
training output by a factor 1/(1− p), so in
prediction, the dropout layer does not do anything.2

Dropout has been used in different types of
architectures. For example, in some implementations
such as Nano GPT, a attention dropout is applied.

Specifically, after the softmax function in (7), some
elements in the Rd×d matrix are not used.

2This seems to be what GPT-2 has done. They release only the prediction
code, in which we do not see any dropout operation.
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Transform blocks and other details

Feed-forward Layers I

In each transformer block, after multi-head
attention, GPT-2 considers two feed-forward layers.

In (5), the GELU (Gaussian Error Linear Units)
activation function is as follows.

GELU(z̃) = z̃ · 1
2

[
1 + erf

(
z̃√
2

)]
, (13)

where erf(z̃) denotes the error function, defined by:

erf(z̃) =
2√
π

∫ z̃

0

e−t
2

dt.
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Transform blocks and other details

Feed-forward Layers II

The GELU function shown below is a smooth
version of the ReLU activation function.
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Transform blocks and other details

Feed-forward Layers III

−3 −2 −1 1 2 3

1

2

z̃

GELU(z̃)
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Transform blocks and other details

Feed-forward Layers IV

In GPT-2,

W1 ∈ Rd×4d and W2 ∈ R4d×d. (14)

From (5), we see that to multiply with Z̃ and to
have the same output size as the input, the number
of rows of W1 and the number of columns of W2

must be both d. However, the choice of 4d appears
to be arbitrary.
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Transform blocks and other details

Final Linear Output Layer I

After all transformer blocks, we get an output
matrix:

Zout ∈ RT×d.

We must convert each row vector to an index in the
Vocabulary set as our next-word prediction.

To this end, we have a final linear layer with weight
matrix

W final ∈ Rd×|Vocabulary|.
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Transform blocks and other details

Final Linear Output Layer II

Then from

Zout ×W final ∈ RT×|Vocabulary|,

for every token in 1, . . . , T , we select the index
corresponding to the largest of the |Vocabulary|
values as the prediction.

Interestingly, people use the same word embedding
vectors for the input matrices as the weights of the
final linear layer.

Recall we said that all word and position embedding
vectors are trainable parameters.
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Transform blocks and other details

Final Linear Output Layer III

By this setting, instead of two |Vocabulary| × d
matrices, we save the space by using only one.
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Transform blocks and other details

Number of Parameters I

In large language models, people often show the
number of parameters to reflect the model size.

For example, the total number of the model
“GPT2-small” is said to have around 124 millions of
parameters.

We show details to calculate the number of
parameters.

To do so, we check weights in different parts of an
LLM model:

weights in transformer blocks,
weights in the final linear layer, and
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Transform blocks and other details

Number of Parameters II

weights in the input matrices.

In each transformer block, from (10), (11), and
(14), we have

W i
Q ∈ Rd×d/h,W i

K ∈ Rd×d/h,W i
V ∈ Rd×d/h, i = 1, . . . , h,

WO ∈ Rd×d,

and
W1 ∈ Rd×4d, W2 ∈ R4d×d.
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Transform blocks and other details

Number of Parameters III

Thus, the total number is

4× d2 + 4× d2 + 4× d2

=12× d2.

For the final linear layer, the number of weights is

|Vocabulary| × d.

Now let us check the remaining parts.

The input matrix is the combination of two parts:
token embedding and position embedding.
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Transform blocks and other details

Number of Parameters IV

Recall we said that all word and position embedding
vectors are trainable parameters.

For token embedding, because according to
document contents, we find each token’s
corresponding embedding, the space needed is

|Vocabulary| × d.

However, we have mentioned that the same weights
are used for the final linear layer, so no extra space
is needed.
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Transform blocks and other details

Number of Parameters V

For position embedding, because we have T possible
positions, the number of weights is

T × d.

For GPT-2-small:

Number of attention blocks = 12,
d = 768,
|Vocabulary| = 50,257,3

T = 1,024.
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Transform blocks and other details

Number of Parameters VI

The sum is

12× d2 × number of blocks+ |Vocabulary| × d+

T × d

= 12× 7682 × 12 + 50,257× 768 + 1,024× 768

= 124,318,464 ≈ 124 Million.

The GPT-2 paper (Rashed et al., 2019) wrongly
stated that the number of parameters is 117 million,
though later they stated 124 million in other places.

3In some subsequent implementation, |Vocabulary| is increased to 50,304,
the nearest multiple of 64 for efficiency.
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Masked self-attention

Next-token Prediction I

Recall that we have a sequence of next-token
predictions; see Figure 1.

However, in the earlier description of the
architecture for training, we may not always take
this situation into account.

For example, in our self-attention operation, we
calculate the relationship between all words in the
word sequence.
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Masked self-attention

Next-token Prediction II

This situation violates a condition mentioned earlier
for training an auto-regressive model: the training
decision function should be the same as the
prediction decision function.
In self-attention, we should sequentially do

SoftMax(

[
“I”

]
WQW

T
K

[
“I”

]T
√
d

)1×1
[
“I”

]
1×dWV

SoftMax(

[
“I”

“I am”

]
WQW

T
K

[
“I”

“I am”

]T
√
d

)2×2

[
“I”

“I am”

]
2×d

WV

...
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Masked self-attention

Next-token Prediction III

The reason is that to have

input: “I”

and

output: “am,”

which corresponds to

xi,1 → f(θ;xi,1:1) ≈ xi,2

in Figure 1, we can only calculate the word
relationships of the current input document.
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Masked self-attention

Next-token Prediction IV

Now ”I” is the only word in our document.

Therefore, the suitable setting is different from what
we did earlier.
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Masked self-attention

Masked Self-attention I

The formulation we gave earlier was “I”
...

“I ... researcher”

WQW
T
K

 “I”
...

“I ... researcher”

T

∈ RT×T .

To be consistent with the prediction, what we
should use is only the lower triangular part of the
above matrix:

(1, 1)
(2, 1) (2, 2)
...

... . . .
(T, 1) · · · · · · (T, T )

 .
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Masked self-attention

Masked Self-attention II

Therefore, in the training procedure, we must mask
all entries above the diagonal.

In practice, people just assign these entries to −∞:
(1, 1) −∞ · · · −∞
(2, 1) (2, 2) −∞ ...
...

... . . . ...
(T, 1) · · · · · · (T, T )

 .
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Masked self-attention

Masked Self-attention III

Then in the SoftMax operation, because

e−∞ = 0,

we have the desired matrix.
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Masked self-attention

Feed-forward Layers I

An interesting question is if we have the same issue
in other operations.

Let us briefly check the feed-forward layers.

Recall in (5) we calculate

GELU(Z̃W1)W2. (15)
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Masked self-attention

Feed-forward Layers II

To have the same setting as prediction, we should
sequentially do

GELU(
[
“I”

]
1×d (W1)d×4d)W2

GELU(

[
“I”

“I am”

]
2×d

(W1)d×4d)W2

...

The operations are precisely the same as those in
(15), so we are fine.
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Masked self-attention

Feed-forward Layers III

Up to this point, we see that operations like (15)
lead us to have a desired property for training an
auto-regressive model: we assemble all the
next-token predictions together in the training
process.

This makes efficient matrix computation for fast
training.
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