
A Self-contained Introduction to Large Language Models

Alice Lin1 and Chih-Jen Lin1,2

1National Taiwan University
cjlin@csie.ntu.edu.tw

2Mohamed bin Zayed University of Artificial Intelligence

February 14, 2025

Abstract

Large language models (LLMs) are a significant technique in Artificial Intelligence. There
is no shortage of documents describing the basic concepts. This article, as another attempt to
give an introduction of LLMs, aims to help beginners with only basic knowledge of machine
learning. We try to be self-contained by giving brief explanation to every basic concept.
Further, we have a modularized design to start from a high-level overview and gradually get
into details of the GPT-2 model.

1 Introduction

LLMs are used by a large amount of people and organizations, across different industries. With a

wide range of capabilities, such as analyzing data and generating content, LLMs assist our daily

lives in several ways, enhancing performance and improving productivity.

With the popularity of LLMs, many documents are available to describe the basic concepts.

Examples include Naveed et al. (2023) and many online pages.1

This article, as another attempt to give an introduction of LLMs, aims to help beginners with

only basic knowledge of machine learning. We try to be self-contained by giving brief explanation to

every basic concept. Further, we have a modularized design. We begin with a high-level descriptions

in Section 2, in which we show the concept of next-token prediction without getting into network

details. In Section 3, we introduce auto-regressive models, which are essential in training and

predicting sequences. Section 4 then gives details of the network architectures, in particular, the

transformer blocks. Finally, Section 5 concludes this document.

1https://medium.com/@vipul.koti333/from-theory-to-code-step-by-step-implementation-and-code-breakdown-of-gpt-2-model-7bde8d5cecda;
https://jalammar.github.io/illustrated-gpt2/; https://www.understandingai.org/p/

large-language-models-explained-with; https://medium.com/data-science-at-microsoft/

how-large-language-models-work-91c362f5b78f

1

https://medium.com/@vipul.koti333/from-theory-to-code-step-by-step-implementation-and-code-breakdown-of-gpt-2-model-7bde8d5cecda
https://jalammar.github.io/illustrated-gpt2/
https://www.understandingai.org/p/large-language-models-explained-with
https://www.understandingai.org/p/large-language-models-explained-with
https://medium.com/data-science-at-microsoft/how-large-language-models-work-91c362f5b78f
https://medium.com/data-science-at-microsoft/how-large-language-models-work-91c362f5b78f


Our discuss focuses on the GPT-2 model (Rashed et al., 2019), though most materials apply to

other LLM architectures as well.

We also have slides available for the teaching purpose; see https://www.csie.ntu.edu.tw/

~cjlin/papers/LLMs/.

2 A High-level Overview of LLMs

2.1 LLM Basics

An LLM learns a model that uses the current

pre-context

to predict

the next token.

We give the following example:

Pre-context The next token
I → am
I am → a
I am a → machine
I am a machine → learning
I am a machine learning → researcher

This setting is called autoregressive prediction in machine learning. Assume we have D documents.

For document i, let us assume

xi,1:j: contexts from 1st to jth words
yij: (j + 1)st word.

Then we have many

(target, instance)

pairs for training. For example, we have

xi: “I am a machine learning researcher” and

xi,1:1 I
xi,1:2 I am
...

From the basic concept of supervised learning, we can solve an optimization problem

min
θ

D∑
i=1

∑
j

ξ(f(θ;xi,1:j),yij)

to obtain the model, where

2

https://www.csie.ntu.edu.tw/~cjlin/papers/LLMs/
https://www.csie.ntu.edu.tw/~cjlin/papers/LLMs/


• θ is the model parameters,

• f(θ;xi,1:j) is a function that gives an approximation of the target yij,

• ξ(·) is the loss function.

However, training a supervised learning model requires that

yij and xi,1:j

are vectors, but they are now word sequences. Having vectors is important because, for example,

we can then define a simple loss function such as

∥yij − f(θ;xi,1:j)∥2

to ensure that θ leads to an output as close to yij as possible. From what we learned in supervised

learning, if instances and targets are vectors, and we agree that the following procedures can be

implemented:

• network architectures (i.e., our f function),

• stochastic gradient methods,

• automatic differentiation,

then we “believe” that an LLM can be implemented. We will explain how we can convert (yij,xi,1:j)

to vectors. Subsequently, we abuse the notation a bit so that xi,1:j is a word sequence as well as

the converted vector.

2.2 Tokenization

We split each document to several tokens and map each token to an integer ID. An example is as

follows:

Document I am a machine learning researcher
↓

Tokenized text I am a machine learning researcher
↓

Token IDs 25 7 100 2 10 1000

We let “Vocabulary” be the huge dictionary of all words (tokens) considered. Thus, |Vocabulary|
is its size. For easy understanding, we consider a word as a token. In practice, we often break a

word to several tokens.

3



If each word is a token, for every word in the sentence we can check the corresponding ID in the

Vocabulary dictionary:

the 25th word in our dictionary is “I”,

the 7th word in our dictionary is “am”,

the 100th word in our dictionary is “a”,

the 2nd word in our dictionary is “machine”,

the 10th word in our dictionary is “learning”,

the 1000th word in our dictionary is “researcher”.

2.3 Position Information

We can let

xi,1:j ∈ {0, 1}|Vocabulary| (1)

be an indicator vector to reflect the occurrence of its words. For example, if

xi,1:2 is “I am” (2)

then we have

xi,1:2 =

25th︷ ︸︸ ︷
[0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . ]T .︸ ︷︷ ︸

7th

However, from the indicator vector and the Vocabulary, we can extract only the set of words in

xi,1:j instead of the word sequences. That is, we cannot recover the order of the words. We need

another indicator vector to reveal the position information. To do so, first we choose a maximum

length T . No matter how long the document is, we always consider only up to the T th word. Then

we can expand the indicator vector in (1) to

xi,1:j ∈ {0, 1}|Vocabulary|×T

so that

xi,1:j =


7 25

1 0 . . . 0 0 0 . . . 0 1 0 . . .
2 0 . . . 0 1 0 . . . 0 0 0 . . .
...

...
...

...

.
Our xi,1:j is now a matrix. If we insist on that the input is a vector, we can do a conversion by,

for example, concatenating all columns. With the position information, we can exactly recover our

word sequence.

4



2.4 Output of the Network

For output, assume our network can generate

ŷij = f(θ;xi,1:j) ∈ [0, 1]|Vocabulary|

indicating the occurrence probability of each word. Consider the example in (2). To predict the

next token, we have

yij is “a”

from the ground truth of the training data. Thus we hope that our predicted ŷij satisfies

(ŷij)100 ≈ 1

and

other elements of ŷij ≈ 0.

2.5 Autoregressive Settings

Up to now what we have is

f(θ;xi,1:j) ∈ [0, 1]|Vocabulary|

↑

network f(θ;xi,1:j)

↑

xi,1:j ∈ {0, 1}|Vocabulary|×T

Everything looks good so far. However, as described later, an issue is that we treat

xi,1:1,xi,1:2, . . .

as independent vectors. We have inputs like

xi,1:1 I
xi,1:2 I am
xi,1:3 I am a

They are related. For example, xi,1:1 is a sub-string of xi,1:2, so we should not treat them as

independent vectors. To have efficient training and prediction, we must have a way so that the same

operation is not conducted multiple times. We know

xi,1:j includes xi,1, xi,2, . . . , xi,j.

5



f(θ;xi,1:1) f(θ;xi,1:2) f(θ;xi,1:3) f(θ;xi,1:4)

xi,4xi,3xi,2xi,1

Figure 1: A sequence of next-token predictions

Therefore, we should design f(·) a way so that the following sequence of calculation can be efficiently

done.

f(θ;xi,1:1), . . . , f(θ;xi,1:j), . . . (3)

That is, we hope things are coupled as indicated in Figure 1. But ensuring that operations used

to calculate f(θ;x1:j−1) can also be for f(θ;x1:j) is not an easy task. Subsequently we introduce

an auto-regressive setting for our purpose.

2.6 Summary

What we have shown is a high-level illustration of LLM. The remaining task is to design a suitable

function f .

3 Auto-regressive Models

3.1 Autoregressive Models

LLM is an autoregressive model, so before giving details of LLM, we discuss basic concepts of

autoregressive models. Autoregressive models predict the next component in a sequence by using

information from previous inputs in the same sequence. A typical example is time series prediction

with applications in stock index prediction, electricity load prediction, etc. Assume our sequence is

z1, z2, . . . .

The way to train a model is by using data shown in the following table.

training instance target value
z1, . . . , zT zT+1

z1, . . . , zT+1 zT+2
...

...

6



In practice, data points occurred long time ago may not be important. We can discard them to

make training instances have the same number of values:

training instance target value
z1, . . . , zT zT+1

z2, . . . , zT+1 zT+2
...

...

3.2 LLM Is an Autoregressive Model

The next-token prediction of LLM is a case of auto-regressive settings. Recall we have the setting

shown in Figure 1. Note that we aim to have

f(θ;xi,1:1) ≈ xi,2

f(θ;xi,1:2) ≈ xi,3

...

For LLM, the f function is complicated. Thus, we begin with learning how to train a simple auto-

regressive model. From the discussion, we will identify important properties to be used for LLM

training/prediction.

3.3 Training a Simple Autoregressive Model

Assume we have the following sequence of data

z1, z2, . . .

and would like to construct a model for one-step ahead prediction. From the observed data, we

collect the following (instance, target value) pairs

x1 = [z1, . . . , zT ]
T y1 = zT+1

x2 = [z2, . . . , zT+1]
T y2 = zT+2

...
...

Assume we have collected n training instances. We can then solve a simple least-square regression

problem to get a model

min
w

n∑
i=1

(yi −wTxi)
2. (4)

Here w includes the model weights. We notice two important properties here. The first property is

that we use matrix operations to handle all data together. Specifically, (4) has an analytic solution:

optimal w = (XTX)−1XTy,

7



where

y =

y1...
yn

 and X =

x
T
1
...
xT
n

 ∈ Rn×T .

For simplicity, we assume that XTX is invertible. We see that even though yT+1 is the target value

of the first instance, it is also a feature of the second training instance. Our setting allows the model

building by efficient matrix operations. That is, we handle all training data together, even though

there are some auto-regressive relationships between them. The reason we can do this is because

our prediction function on training data is the same as the one we use for future prediction. In

testing, for a vector x containing past information, we use wTx to get our prediction. In training,

for any xi, in (1) we use the same way to hope that wTxi is close to yi. This is the second crucial

property we will use in our LLM design.

4 The Architecture of GPT-2

4.1 Network Architecture

4.1.1 Network Design

Recall that we hope to have a function f that can efficiently calculate

f(θ;xi,1:1), . . . , f(θ;xi,1:j), . . .

as shown in Figure 1. The situation is similar to the least-square approximation discussed earlier

for time-series prediction. The difference is that instead of a linear function, here we use a more

complicated one. Different types of neural networks can serve as our f . For example, we can modify

convolutional networks as the main component of our f . See details in, for example, https://

dlsyscourse.org/slides/transformers.pdf. We will describe the most used network for LLMs:

transformer. However, it is possible that in the future we can develop better networks.

8

https://dlsyscourse.org/slides/transformers.pdf
https://dlsyscourse.org/slides/transformers.pdf


4.1.2 Overall Architecture

The architecture used by LLMs contains several transformer blocks. Transformer (Vaswani et al.,

2017) is an effective network for many applications. The overall architecture of an LLM is as follows.

SoftMax: next token probability

↑

Linear layer

↑

Several transformer blocks

↑

Token + position embedding

We specifically discuss the architecture used in the implementation in GPT-2-small (Radford et al.,

2019). Their code is at https://github.com/openai/gpt-2/blob/master/src/model.py. Sim-

ilar architectures have been adopted in other places, such as NanoGPT (https://github.com/

karpathy/nanoGPT). Precisely, what GPT-2 does is the following network.

Tokenized Text

Token and Positional

Embedding Layer

Dropout

Transformer Block
Repeat

Several Times

Final LayerNorm

Linear Output Layer

For the initialization of model weights, some common ways are available. For example, we can

randomly draw values from normal distribution with zero mean.

4.1.3 Input and Embedding Vectors

Now let us discuss the input of the network. To begin, we assume that

• each word (token) in our Vocabulary corresponds to an embedding vector, and

• each position of 1, . . . , T corresponds to an embedding vector.

9

https://github.com/openai/gpt-2/blob/master/src/model.py
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT


We then combine these two embedding vectors as one vector. Various ways are possible for the

combination. For example, we can concatenate the two vectors as a longer one. Or we can sum up

the two vectors. Then x1:T becomes the following matrix.

x1
...
xT

 ...

 ∈ RT×d (5)

where d is the dimension of the embedding vector. This matrix becomes the input of the architecture.

Up to now, it seems that we assume all documents have the same length T . Of course, this

assumption is in general untrue. What we do is:

• if document length > T , use only the first T tokens, and

• if document length < T , we add “empty” values after the end of the document.

The main reason of using a fixed document length is for easily conducting operations. Totally we

have

|Vocabulary|

vectors for word embedding, and

T

vectors for position embedding. For each of the T words (tokens) in the document, we extract

a word embedding vector

and

a position embedding vector.

All these embedding vectors are trainable parameters.

4.2 Transform Blocks and Other Details

4.2.1 A Transformer Block

For each transformer block, we let

• Z be the input matrix, and

• Zout be the output matrix.

We manage to have that

Zout ∈ RT×d

has the same dimensionality as Z. By doing so, the output can be the input of the next block. We

repeat this process for several blocks. Typically a transformer block involves

10



• a multi-head attention layer, and

• feed-forward layers.

Usually, we surround each of the two components with a normalization layer and a residual con-

nection. Thus the mathematical operations in a block are as follows.

Z̃ = LayerNorm(Z) (6)

Z̃ ← Z +DropOut(MultiHead(Z̃)) (7)

Z̃ ← LayerNorm(Z̃) (8)

Zout = Z̃ +DropOut(GELU(Z̃W1)W2) (9)

Subsequently we discuss each operation in detail. Besides the attention layer in (7), what else in

one transform block may slightly vary across LLM implementations. Our operations in (6)-(9) can

be illustrated in the following figure.2

LayerNorm

Multi-head

Attention

Dropout

+

LayerNorm

Feed Forward

Dropout

+

In the figure, ⊕ means the residual connection, which will be explained later.

4.2.2 Transformer and Attention

Eq. (7) is the core of a transformer block: a multi-head self-attention layer. We start with discussing

single-head attention. If the input matrix is

Z̃ ∈ RT×d,

2Modified from https://sebastianraschka.com/pdf/slides/2024-acm.pdf

11

https://sebastianraschka.com/pdf/slides/2024-acm.pdf


the attention operation is

SoftMax(
Z̃WQW

T
K(Z̃)

T

√
d

)Z̃WV . (10)

We consider three trainable weight matrices

WQ ∈ Rd×d,WK ∈ Rd×d,WV ∈ Rd×d

to convert the input matrix Z̃ to

Z̃WQ ∈ RT×d, Z̃WK ∈ RT×d, Z̃WV ∈ RT×d.

In (10), we can combine WQW
T
K as one single weight matrix. However, people still write them

separately because in more general situations, we may consider

WQ ∈ Rd×d′ and WK ∈ Rd×d′

with d′ < d. That is, WQW
T
K becomes a low-rank approximation of the d× d weight matrix. Then

we need two matrices instead of one. We will see this situation in multi-head attention. In (10),

the SoftMax function is applied on each row z of an input matrix in the following way.

SoftMax(z) =


exp(z1)∑
j exp(zj)

...
exp(zT )∑
j exp(zj)

 . (11)

Let us briefly talk about the attention operation in (10). If the SoftMax(·) part is not there, then
(10) reduces to

Z̃WV ,

which is no more than a feed-forward operation. What

SoftMax(
Z̃WQW

T
K(Z̃)

T

√
d

)

give are weights for the T words in Z̃. Thus in (10) we do a weighted average of words in Z̃. The

purpose is to transform the representation of each word based on its relationship to other words

in the same document. We do not get into details here because our focus is not on explaining the

attention mechanism.

In practice, we extend the single-head attention to multi-head for capturing different types of

relationships between words in the document. Specifically, we combine results of h heads:

Concat(head1, . . . , headh)WO, (12)

where

headi = SoftMax(
Z̃W i

Q(W
i
K)

T (Z̃)T
√
d

)Z̃W i
V ∈ RT×d/h. (13)

12



Due to the use of h heads, we now have

W i
Q ∈ Rd×d/h,W i

K ∈ Rd×d/h,W i
V ∈ Rd×d/h. (14)

Earlier we talked about if W i
Q(W

i
K)

T can become just one matrix. We cannot do that here because

W i
Q and W i

K are no longer squared matrices. In (12), Concat() is a function which concatenates

matrices together. That is,

Concat(head1, . . . , headh)

= [head1, . . . , headh] ∈ RT×d.

Another advantage of using multiple heads is that the computations for headi, ∀i can be done in

parallel. We further have in (12) that

WO ∈ Rd×d. (15)

The use of WO is like we have a linear layer after concatenation.

4.2.3 Layer Normalization

First let us give the mathematical operations in (6) and (8). For any row z of the input matrix,

the normalized row is

Normalize(z) = a⊙ z −mean(z)

std(z)
+ b, (16)

where mean(·) and std(·) are the mean and standard deviation, and ⊙ means the component-wise

product between two vectors. In (16),

a ∈ Rd, b ∈ Rd

are learnable parameters shared across rows of the input matrix. The reason of applying layer

normalization is to avoid too large or too small gradient values. In deep learning, we have operations

across layers to calculate the gradient. Such a long sequence of operations may cause very large or

small values (think about the multiplication of several numbers). Several techniques are available

to address this issue of too large or too small gradient values, and layer normalization is one of

them. As we can see, the normalization operation in (16) avoids values being extreme.

4.2.4 Residual Connections

Residual connection is another technique to make the problem of too small and too large gradient

values less serious. It also improves the overall training stability. The operation is simply to sum the

input and output of one (or several) neural network layer. Usually we use the following flowchart

to represent residual connections:

13



+

The residual connection can be applied to any network layer with the same input/output dimen-

sionality.

4.2.5 Dropout Operations

Dropout is a technique to prevent overfitting in neural networks. From Srivastava et al. (2014), “the

key idea is to randomly drop units (along with their connections) from the neural network during

training.” Under each mini-batch of the stochastic gradient method, the “thinned” network is fixed

so we can do the sub-gradient calculation. Thus, in different batches, the networks are slightly

different. It is like that we are doing an ensemble of several networks. Therefore, we need a rate p

as the probability that a neuron is retained. In the prediction stage, we do not remove any neurons

or their connections. Instead, we multiply every weight of the dropout layer by the rate p. In some

places (e.g., PyTorch), p means the rate of elements being removed. Thus, in the prediction stage

we should multiply every weight of the dropout layer by 1− p. Interestingly, what PyTorch does is

to scale the training output by a factor 1/(1 − p), so in prediction, the dropout layer does not do

anything.3

Dropout has been used in different types of architectures. For example, in some implementations

such as Nano GPT, a attention dropout is applied. Specifically, after the softmax function in (11),

some elements in the Rd×d matrix are not used.

4.2.6 Feed-forward Layers

In each transformer block, after multi-head attention, GPT-2 considers two feed-forward layers. In

(9), the GELU (Gaussian Error Linear Units) activation function is as follows.

GELU(z̃) = z̃ · 1
2

[
1 + erf

(
z̃√
2

)]
, (17)

where erf(z̃) denotes the error function, defined by:

erf(z̃) =
2√
π

∫ z̃

0

e−t2 dt.

3This seems to be what GPT-2 has done. They release only the prediction code, in which we do not see any
dropout operation.

14



The GELU function shown below is a smooth version of the ReLU activation function.

−3 −2 −1 1 2 3

1

2

z̃

GELU(z̃)

In GPT-2,

W1 ∈ Rd×4d and W2 ∈ R4d×d. (18)

From (9), we see that to multiply with Z̃ and to have the same output size as the input, the number

of rows of W1 and the number of columns of W2 must be both d. However, the choice of 4d appears

to be arbitrary.

4.2.7 Final Linear Output Layer

After all transformer blocks, we get an output matrix:

Zout ∈ RT×d.

We must convert each row vector to an index in the Vocabulary set as our next-word prediction.

To this end, we have a final linear layer with weight matrix

W final ∈ Rd×|Vocabulary|.

Then from

Zout ×W final ∈ RT×|Vocabulary|,

for every token in 1, . . . , T , we select the index corresponding to the largest of the |Vocabulary|
values as the prediction. Interestingly, people use the same word embedding vectors for the input

matrices as the weights of the final linear layer. Recall we said that all word and position embedding

vectors are trainable parameters. By this setting, instead of two |Vocabulary|× d matrices, we save

the space by using only one.

15



4.2.8 Number of Parameters

In large language models, people often show the number of parameters to reflect the model size.

For example, the total number of the model “GPT2-small” is said to have around 124 millions of

parameters. We show details to calculate the number of parameters. To do so, we check weights

in different parts of an LLM model:

• weights in transformer blocks,

• weights in the final linear layer, and

• weights in the input matrices.

In each transformer block, from (14), (15), and (18), we have

W i
Q ∈ Rd×d/h,W i

K ∈ Rd×d/h,W i
V ∈ Rd×d/h, i = 1, . . . , h,

WO ∈ Rd×d,

and

W1 ∈ Rd×4d, W2 ∈ R4d×d.

Thus, the total number is

4× d2 + 4× d2 + 4× d2

=12× d2.

For the final linear layer, the number of weights is

|Vocabulary| × d.

Now let us check the remaining parts. The input matrix is the combination of two parts: token

embedding and position embedding. Recall we said that all word and position embedding vectors

are trainable parameters. For token embedding, because according to document contents, we find

each token’s corresponding embedding, the space needed is

|Vocabulary| × d.

However, we have mentioned that the same weights are used for the final linear layer, so no extra

space is needed. For position embedding, because we have T possible positions, the number of

weights is

T × d.

For GPT-2-small:

16



• Number of attention blocks = 12,

• d = 768,

• |Vocabulary| = 50,257,4

• T = 1,024.

The sum is

12× d2 × number of blocks + |Vocabulary| × d+

T × d

= 12× 7682 × 12 + 50,257× 768 + 1,024× 768

= 124,318,464 ≈ 124 Million.

The GPT-2 paper (Rashed et al., 2019) wrongly stated that the number of parameters is 117 million,

though later they stated 124 million in other places.

4.3 Masked Self-Attention

4.3.1 Next-token Prediction

Recall that we have a sequence of next-token predictions; see Figure 1. However, in the earlier

description of the architecture for training, we may not always take this situation into account.

For example, in our self-attention operation, we calculate the relationship between all words in the

word sequence. This situation violates a condition mentioned earlier for training an auto-regressive

model: the training decision function should be the same as the prediction decision function. In

self-attention, we should sequentially do

SoftMax(

[
“I”

]
WQW

T
K

[
“I”

]T
√
d

)1×1

[
“I”

]
1×d

WV

SoftMax(

[
“I”

“I am”

]
WQW

T
K

[
“I”

“I am”

]T
√
d

)2×2

[
“I”

“I am”

]
2×d

WV

...

The reason is that to have

input: “I”

and

4In some subsequent implementation, |Vocabulary| is increased to 50,304, the nearest multiple of 64 for efficiency.

17



output: “am,”

which corresponds to

xi,1 → f(θ;xi,1:1) ≈ xi,2

in Figure 1, we can only calculate the word relationships of the current input document. Now ”I”

is the only word in our document. Therefore, the suitable setting is different from what we did

earlier.

4.3.2 Masked Self-attention

The formulation we gave earlier was “I”
...

“I ... researcher”

WQW
T
K

 “I”
...

“I ... researcher”


T

∈ RT×T .

To be consistent with the prediction, what we should use is only the lower triangular part of the

above matrix: 
(1, 1)
(2, 1) (2, 2)
...

...
. . .

(T, 1) · · · · · · (T, T )

 .

Therefore, in the training procedure, we must mask all entries above the diagonal. In practice,

people just assign these entries to −∞:
(1, 1) −∞ · · · −∞
(2, 1) (2, 2) −∞ ...
...

...
. . .

...
(T, 1) · · · · · · (T, T )

 .

Then in the SoftMax operation, because

e−∞ = 0,

we have the desired matrix.

4.3.3 Feed-forward Layers

An interesting question is if we have the same issue in other operations. Let us briefly check the

feed-forward layers. Recall in (9) we calculate

GELU(Z̃W1)W2. (19)

18



To have the same setting as prediction, we should sequentially do

GELU(
[
“I”

]
1×d

(W1)d×4d)W2

GELU(

[
“I”

“I am”

]
2×d

(W1)d×4d)W2

...

The operations are precisely the same as those in (19), so we are fine. Up to this point, we see

that operations like (19) lead us to have a desired property for training an auto-regressive model:

we assemble all the next-token predictions together in the training process. This makes efficient

matrix computation for fast training.

5 Conclusions

In this article, we provide an introduction to LLMs that is simple to understand. Starting from the

concept of LLMs to an explaination of GPT-2’s architecture, the article is easy to follow through.

As LLMs are still evolving and will likely become an even more powerful tool in the future, this

article hopes to help more people have a better understanding of LLMs.

Acknowledgements

This work was supported by National Science and Technology Council of Taiwan grant 110-2221-E-

002-115-MY3. The authors thank Ming-Wei Chang for some valuable discussion in the early stage

of writing this document.

References

H. Naveed, A. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Barnes, and A. Mian. A compre-

hensive overview of large language models, 07 2023.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsu-

pervised multitask learners, 2019.

A. Rashed, J. Grabocka, and L. Schmidt-Thieme. Multi-label network classification via weighted

personalized factorizations, 2019.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple

way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15

(1):1929–1958, 2014.

19



A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-

sukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems

30, pages 5998–6008. 2017.

20


	Introduction
	A High-level Overview of LLMs
	LLM Basics
	Tokenization
	Position Information
	Output of the Network
	Autoregressive Settings
	Summary

	Auto-regressive Models
	Autoregressive Models
	LLM Is an Autoregressive Model
	Training a Simple Autoregressive Model

	The Architecture of GPT-2
	Network Architecture
	Network Design
	Overall Architecture
	Input and Embedding Vectors

	Transform Blocks and Other Details
	A Transformer Block
	Transformer and Attention
	Layer Normalization
	Residual Connections
	Dropout Operations
	Feed-forward Layers
	Final Linear Output Layer
	Number of Parameters

	Masked Self-Attention
	Next-token Prediction
	Masked Self-attention
	Feed-forward Layers


	Conclusions

