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Abstract

Coordinate descent (CD) methods have been a state-
of-the-art technique for training large-scale linear SVM.
The most used setting is to solve the dual problem of
an SVM formulation without the bias term (or an SVM
formulation by embedding the bias term in the weight
vector). The reason of omitting the bias term is that
dual SVM no longer has a linear constraint and the
CD procedure of updating one variable at a time is
very simple. However, some have criticized the decision
of not considering the bias term. To understand the
role of the bias term in the design of CD methods
for linear SVM, we give a thorough study on two-
variable CD. First, if the bias term is not considered,
we develop a two-variable CD that is competitive with
the commonly used one-variable CD and is superior
for difficult problems. The procedure is simple and
has theoretical linear-rate convergence. Second, we
investigate two-variable CD for linear SVM with the
bias term. Analysis shows that CD is much less efficient
for such a setting. Therefore, we conclude that in using
CD for linear SVM, in general the bias term should not
be considered.

1 Introduction

For large and sparse data, linear support vector ma-
chines (SVM) have been effective to achieve competitive
test accuracy. To train large-scale linear SVM, coordi-
nate descent (CD) methods to solve the dual problem
are a state-of-the-art approach. The basic idea is to up-
date a small number of variables at a time while fixing
others.

While CD is a classical optimization approach that
can be traced back to, for example, [9] for unconstrained
quadratic minimization, for linear SVM this type of
techniques becomes popular mainly after [10]. They
point out that by the special structure of the dual
problem of linear SVM, each CD update can be cheaply
conducted. Since then, CD has been widely adopted
for linear SVM and many subsequent studies including
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theoretical investigations have been available (e.g., [22,
25]). Another hallmark of CD for linear SVM in [10] is
that at each step a simple one-variable sub-problem is
minimized and a closed-form solution is available. Thus
besides the efficiency, a CD implementation for linear
SVM is extremely simple.

The work [10] considers a formulation slightly dif-
ferent from the standard SVM so that the bias term is
omitted or embedded in the weight vector. If the bias
term is considered, the dual problem contains a linear
constraint and each CD step must update at least two
variables. In contrast, without the bias term the dual is
bound-constrained and a simple CD of using one vari-
able is applicable. However, recently some have criti-
cized the use of the SVM formulation without a bias
term.1 Therefore, an important question is whether the
setting in [10] is a must or not. If an effective two-
variable CD can be developed for the dual with a linear
constraint, then probably a bias term can always be
considered.

While for linear SVM it is possible to consider
the dual problem with/without a linear constraint, for
problems such as linear one-class SVM [21] or SVDD
[26], the dual problem must have a linear constraint.
Then one-variable CD is not applicable because at least
two variables must be updated at a time.

The above discussion motivates us to thoroughly
study two-variable CD for linear SVM with/without the
bias term. Our two main results are as follows.

• If the bias term is not considered, no works have stud-
ied in detail if two-variable CD can compete with one-
variable CD by [10]. After some derivations, we de-
velop a simple and efficient solution procedure. The-
oretical linear-rate convergence is established. The
resulting two-variable CD is in general competitive
with one-variable CD by [10], and is superior on dif-
ficult problems. See details in Section 3.

• We study two-variable CD for linear SVM with the
bias term, where the dual has a linear constraint.
Analysis and experiments show that CD for such an

1For example, https://github.com/scikit-learn/scikit-
learn/pull/4738
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optimization problem is much slower than CD for
linear SVM without the bias term. Therefore, the
decision in [10] to not have the bias term is very
essential for the success of CD for linear SVM. Details
are in Section 4.

Results in this work imply that for linear one-
class SVM or SVDD, if we would like to consider CD
methods, new developments may be needed.

A related work to ours is [23], which studied one-
and two-variable CD for kernel SVM with/without the
bias. Our study shows that the difference between CD
for linear SVM with/without a bias term is much more
dramatic than the difference in the kernel situation. For
other related works on CD for SVM, we cite and discuss
them in various places in this paper.

Programs and supplementary materials are avail-
able at https://www.csie.ntu.edu.tw/~cjlin/

papers/2var_cd/.

2 Coordinate Descent Method for Dual of
Linear SVM

For training instances (yi,xi), i = 1, . . . , l, where yi ∈
{−1,+1} and xi ∈ Rn, linear SVM solves the following
optimization problem.

min
w,b

1

2
wTw + C

∑l

i=1
ξ(w, b;xi, yi),(2.1)

where ξ(w, b;xi, yi) is a loss function and C ∈ (0,∞) is
a penalty parameter. The following two loss functions
are commonly considered for SVM.

ξ(w, b;x, y) ≡

{
max(0, 1− y(wTx+ b)) l1 loss,

max(0, 1− y(wTx+ b))2 l2 loss.

The variable b is called the bias term. It is often used
for kernel SVM, but for some linear SVM works (e.g.,
[10]), b is omitted or embedded into w by adding one
constant feature to data:

w ←
[
w
b

]
, xi ←

[
xi
1

]
.(2.2)

In Section V of supplementary materials we have ad-
ditional experiments on (2.2) though observations are
generally the same as if the bias is not considered.
We further show there that in most cases of our high-
dimensional data, linear SVM with and without the bias
give equally good models (i.e., similar test accuracy).

If (2.1) is referred to as the primal problem, then
the dual optimization problem is

min
α

f(α) ≡ 1

2
αTQα− eTα

subject to 0 ≤ αi ≤ Ci,∀i,
yTα = 0 (if b is considered),

(2.3)

Algorithm 1 A framework of block CD methods

1: Let α be a feasible point
2: while α is not optimal do
3: Select a working set B
4: Solve the sub-problem (2.5)
5: Update α by αB ← αB + dB
6: end while

where yTα = 0 vanishes if b is omitted,

e = [1, . . . , 1]T , Ci =

{
C l1 loss,

∞ l2 loss,
and

Qij =

{
yiyjx

T
i xj + 1

2Ci
l2 loss and i = j,

yiyjx
T
i xj otherwise.

(2.4)

While a dual problem without a linear constraint
may be easier to be solved, for linear SVM no serious
study has been made to confirm this conjecture. On
the other hand, for kernel SVM, some past works (e.g.,
[23]) have conducted a detailed comparison. Therefore,
a goal of this work is to fill the gap by studying if the
CD method performs similarly or not for the dual of
linear SVM with/without the bias.

2.1 CD Methods for Linear SVM The basic idea
of a CD method to solve (2.3) is that at the current α,
we change elements in a small working set B while fix
other components. If

N ≡ {1, . . . , l} \B and d =
[
dB
0

]
,

then

f(
[
αB
αN

]
+
[
dB
0

]
) =

1

2
dTBQBBdB +∇Bf(α)TdB + constant,

where dB is the sub-vector used to change α. We then
minimize the following sub-problem over dB .

min
dB

1

2
dTBQBBdB +∇Bf(α)TdB

subject to

[
αB
αN

]
+

[
dB
0

]
is feasible.

(2.5)

After solving the above sub-problem, we update α by

αB ← αB + dB .(2.6)

A summary of the procedure is in Algorithm 1.
Throughout this work, we call the process of finishing
an update in (2.6) a CD step. From (2.5), important
tasks at each CD step are

• constructing the gradient vector ∇B(α) in (2.5),

• selecting the working set B, and

• solving the sub-problem.

We discuss past developments in Sections 2.2 and 2.3.
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2.2 Gradient Calculation for Linear and Kernel
SVM To construct the sub-problem (2.5), QBB and
∇f(α) must be calculated. We show that the situations
between kernel and linear are very different. Form (2.3),

∇Bf(α) = QB,:α− eB .(2.7)

Thus calculating QB,: is the main computational cost.
If kernel is used,

Qi,:α =
∑l

j=1
Qijαj =

∑l

j=1
yiyjK(xi,xj)αj ,

where K(xi,xj) = φ(xi)
Tφ(xj) is the kernel function

and φ(·) maps each instance to a higher dimensional
space. Assume each K(xi,xj) costs O(n) operations,
where n is the number of features. Then (2.7) requires
O(ln) cost. Note that in calculating QB,:, the QBB sub-
matrix needed in (2.5) has also been obtained.

Because QB,: has been calculated, we can easily
maintain the gradient by updating the current ∇f(α)
to ∇f(α+ d):

∇f(α+ d) = ∇f(α) +Q:,BdB .(2.8)

For linear SVM, [10] proposed a technique to signif-
icantly reduce the cost of constructing the sub-problem
from O(ln) to O(|B|n). They notice that if

u ≡
∑l

j=1
αjyjxj(2.9)

is available, then

Qi,:α =
∑l

j=1
yiyjx

T
i xjαj = yiu

Txi(2.10)

is a simple inner product with O(n) cost. To maintain
u they consider

u← u+
∑

j:j∈B
djyjxj ,(2.11)

which costs O(|B|n). Eventually the vector u converges
to the primal optimal solution w. This technique is not
applicable to kernel SVM because xj in (2.9) becomes
φ(xj) and u may be an infinite dimensional vector.

2.3 Working-set Selection for CD Methods We
have shown that the cost for constructing (2.5) for linear
SVM is much cheaper than kernel. On the other hand,
from (2.8), ∇f(α) can be maintained for kernel but not
for linear. This situation causes differences in selecting
the working set B.

We begin with discussing the working-set selection
for linear SVM without the bias term. The feasible set
of (2.3) is

{α | 0 ≤ αi ≤ Ci, ∀i = 1, . . . , l}.

The work [10] considers the simplest setting of using
cyclic coordinate descent, so each time B = {i} is
chosen. The sub-problem (2.5) can be easily solved by

d = max(−αi,min(Ci − αi,
−∇if(α)

Qii
)).(2.12)

However, [10] pointed out that in practice using a ran-
dom permutation at each cycle leads to faster conver-
gence:

απ(1),απ(2), . . . ,απ(l),(2.13)

where π(1), . . . , π(l) is a permutation of 1, . . . , l. Alter-
natively, we may randomly select an index at each CD
step to achieve the randomness of the working-set se-
lection. Some theoretical justification was given at, for
example, [13, 24]. Others have even studied the setting
of selecting the index by an adaptive probability distri-
bution (e.g., [6, 4], and references therein). A summary
of the one-variable CD is in Algorithm I of supplemen-
tary materials.

If a bias term is considered, the feasible set of (2.3)
is

{α | yTα = 0, 0 ≤ αi ≤ Ci, ∀i = 1, . . . , l}.

To have that
[
αB
αN

]
+
[
dB
0

]
is feasible, dB must satisfy

yTB(αB + dB) = −yTNαN , and 0 ≤ αi + di ≤ Ci,∀i ∈ B.

Then B must contain at least two elements. Therefore,
regardless of linear or kernel SVM, the above one-
variable CD cannot be used.

Next we discuss the difference between working-set
selection for kernel and linear SVM. While a random
or a cyclic selection is possible, most kernel works (e.g.,
[11, 20, 12, 5, 7, 14, 16, 27, 1]) consider a greedy selection
of using the gradient information.2 Specifically, because
the trick (2.9)-(2.11) for linear SVM is not applicable,
(2.8) must be conducted and the whole gradient is
available. In contrast, for linear SVM, the greedy
setting is not suitable because calculating the gradient
causes the cost of each CD step to become l times. We
omit further comparisons because our focus here is on
linear SVM. Interested readers can check Section 4.1 of
[10].

3 Two-variable CD Method for Linear SVM
without the Bias Term

To use two rather than one element in each coordinate
descent step, we consider a working set B = {i, j}. For

2We cite works proposing greedy working-set selections here.
Their convergences may be proved in other studies.
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the sub-problem (2.5), we slightly modify the objective
function to a proximal setting.

min
dB

1

2
dTBQBBdB +∇Bf(α)TdB +

λ

2
‖dB‖2,(3.14)

where λ > 0 is a small positive value. In some earlier CD
works (e.g., [8, 19, 15]), such a modification on the sub-
problem has been considered. For the convenience of the
description, we assume that the new term λ‖dB‖2/2 has
been absorbed to the original quadratic term by

Qii ← Qii + λ, Qjj ← Qjj + λ.(3.15)

The proximal term is added because first, the proof of
linear convergence can be more easily established, and
second, from (3.15),

QBB is positive definite(3.16)

and we will show that the solution procedure of the sub-
problem is simpler. The two-variable sub-problem is

min
dB

1

2
dTBQBBdB +∇Bf(α)TdB(3.17)

subject to 0 ≤ αi + di ≤ Ci, 0 ≤ αj + dj ≤ Cj .

Solving this sub-problem is more complicated than
the one-variable case in (2.12). We give details in
Section II.I of supplementary materials.

For the working-set selection, in Section 2 we men-
tioned that for the one-variable scenario [10] considers
a permuted sequence (2.13) for cyclic updates. Now we
must choose two variables at a time, so a direct exten-
sion is to cyclically consider

π(1, 2), . . . , π(1, l), π(2, 1), . . . , π(l − 1, l),(3.18)

which is a permutation of

(1, 2), . . . , (1, l), (2, 1), . . . , (l − 1, l).

Unfortunately, this setting is not practical because the
O(l2) storage to store the sequence is prohibitive for
large problems. We propose three feasible settings.

• We permute {1, . . . , l} first, and for each π(i), an-
other permutation π̄ of {1, . . . , l} is generated. The
sequence considered is therefore

(π(1), π̄(1)), . . . , (π(1), π̄(l)), . . . , (π(l), π̄(l)),(3.19)

though some pairs with π(i) = π̄(j) must be removed.
However, a concern is that such a sequence may not
be random enough.

• We randomly select every (i, j) rather than permute
indices.

• We permute 1, . . . , l and consider the following pairs.

(π(1), π(2)), (π(3), π(4)), . . . , (π(l − 1), π(l)).(3.20)

The selection scheme turns out to be very important as
shown in the experiments in Section 5. Some interesting
findings will be presented, and we conclude that the
setting of using (3.20) gives the fastest convergence.

3.1 Linear Convergence If a random working-set
selection is considered, we can apply the result in [18] to
have linear convergence in expectation. For the setting
(3.20) that is the best in our experiments, we prove in
Section II.II of supplementary materials that the two-
variable CD algorithm is a special case of the feasible-
descent methods in [28]. Thus the algorithm is linearly
convergent.

3.2 Discussion Shrinking techniques are effective
strategies in SVM literature to tentatively remove some
bounded variables in the optimization process. We show
that the two-variable CD considered here can incorpo-
rate such a technique. Details are in Section II.III of
supplementary materials.

It is possible to consider a sub-problem without the
proximal term. However, the solution procedure is more
complicated because the matrix in (3.16) may not be
positive definite. This occurs if l1-loss SVM is used. We
give detailed discussion in Section VII of supplementary
materials.

4 Two-variable CD for Linear SVM with the
Bias Term

With the bias term, the dual problem (2.3) has a linear
constraint. Let B = {i, j} be the working set at
the current CD step. For the discussion here we use
αi, αj rather than di, dj to describe the two-variable
sub-problem

min
αi,αj

f(. . . , αi, . . . , αj , . . . )

subject to 0 ≤ αi ≤ Ci, 0 ≤ αj ≤ Cj ,
yiαi + yjαj = −yTNαN .

(4.21)

This sub-problem has been routinely solved in CD
methods for kernel SVM, where the bias term is often
considered. With the linear constraint, the feasible
region becomes a line segment as indicated in Figure
1. In contrast, the sub-problem (3.17) has the whole
box region as the feasible set. Details of the procedure
to solve (4.21) can be found in for example, Section 6 of
[2]. More discussion on two-variable CD for linear SVM
with the bias term is in Section III of supplementary
materials. Here we focus on the convergence speed in
comparison with the situation without the bias term.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited



αi

αj

yiαi + yjαj = −yTNαN

Ci

Cj

Figure 1: An illustration of the feasible region of (4.21).
We assume that the solid circle on the αi-axis is the
current iterate and (4.22) is satisfied.

(αi, 0) (αi, 0)

Figure 2: An illustration of the two situations in mini-
mizing the quadratic function (4.21) over the constraint
(4.23). The solid circle indicates the current iterate
shown on the αi-axis of Figure 1.

4.1 Difference Between With and Without the
Bias Term In Section 1, we mentioned that [10] did
not consider the SVM formulation with a bias term.
Therefore, the dual SVM is a bound-constrained prob-
lem and one-variable CD is applicable. An extension
(still without considering the bias) to two-variable CD
has been successfully developed in Section 3. An in-
teresting question now is whether we can have effective
two-variable CD for the dual problem with a linear con-
straint. If we can, then we may prefer always using the
standard SVM formulation with the bias term. Unfor-
tunately, here we explain that some subtle differences
occur and two-variable CD for the dual problem with a
linear constraint is often slower.

If a bias term is considered and assume that yi 6= yj ,
then the feasible region is shown in Figure 1. Assume
the current α satisfies

αi ∈ (0, Ci), αj = 0;(4.22)

see the solid circle on the x-axis of Figure 1. We can
change (αi, αj) only if it does not satisfy the optimality
condition. Now the quadratic objective function of
(4.21) over the constraint

yiαi + yjαj = −yTNαN(4.23)

is in one of the two situations illustrated in Figure 2.
From Figures 1 and 2, the objective function can be
decreased only if the right sub-figure of Figure 2 occurs.
Therefore, for a randomly selected {i, j} working set,

αi

αj

(αi, 0)

Ci

Cj

(a) (αi, 0) is optimal
and cannot be further
changed.

αi

αj

(αi, 0)

Ci

Cj

(b) (αi, 0), though on
the boundary, can be
changed to decrease the
function value

Figure 3: An illustration showing that without the
linear constraint, in general an iterate (αi, 0) on the
boundary is not optimal for the sub-problem. Thus we
can improve the objective function value. The contour
indicates values of the quadratic objective function

the chance we can improve the objective function value
is only half.

In contrast, if the optimization problem does not
have the equality constraint, then unless the relation-
ship between the contour and the feasible region is like
Figure 3a, we can always change αi to improve the func-
tion value. For example, in Figure 3b, although (αi, 0)
is on the boundary of the feasible region, we can identify
another point with a smaller objective function value.

We now use mathematical derivations to explain
the above analysis. Assume yi = 1, yj = −1. With
the assumption (4.22), if the bias term is used, the
optimality condition is that there exists b such that

∇if(α) + b = 0, ∇jf(α)− b ≥ 0.

This is equivalent to

∇jf(α) ≥ −∇if(α)

and as we said, the chance that it happens may be only
half.

If the bias term is not considered, under the as-
sumption (4.22) the optimality condition is

∇if(α) = 0 and ∇jf(α) ≥ 0.

Clearly, though the chance that ∇jf(α) ≥ 0 holds may
be only half, the probability that ∇if(α) = 0 holds is
measure zero. Now we see a crucial difference between
with and without the bias term: for the former, in
the optimality condition, (αi, αj) are tied together. In
contrast, for the latter, the optimality conditions of αi
and αj are independent to each other.

Our discussion so far is by assuming that the current
iterates satisfies (4.22). That is, one element is free,
while the other is bounded. In fact, a similar argument
can be made if both elements are bounded, though we
do not go through details here.
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In summary, if in the optimization process many
α variables are bounded, we frequently have pairs like
those in (4.22). Then with a high probability the CD
step is wasted if the bias term is considered. In Section
5.3, we will experimentally confirm the analysis here.

Several works ([15, 17]) have considered ran-
dom/cyclic working-set selections in CD for lin-
ear/kernel SVM with a bias. They focus on comparing
CD between random/cyclic and greedy selections. In
contrast, ours focuses on random/cyclic selections but
compares CD for linear SVM with and without the bias.

5 Experiments

We consider data sets listed in Table I of supplementary
materials. Some are dense sets with l � n and some
are sparse sets with both large l and n. We present
results of some sets by using the l2 loss, while leave
complete results including those of using the l1 loss in
supplementary materials.

For each setting, we show CD steps or training time
versus the relative difference to the optimal function
value:

|f(α)− f(α∗)|
|f(α∗)|

,

where α∗ is an approximate optimal solution obtained
by running many iterations of the algorithm. The
regularization parameter C is set to be 1 and 8,192.

5.1 Linear SVM without Bias: Working-set
Selection To identify an effective pair-selection scheme
for two-variable CD, we compare the following settings
discussed in Section 3.

• full: a permutation of O(l2) elements as shown in
(3.18).

• semi-full: the setting in (3.19) to avoid the O(l2)
storage of full.

• random: a random selection.

• perm: the setting in (3.20) to avoid the O(l2) storage
of full.

In Figure III of supplementary materials, we check
the number of CD steps versus the relative function-
value decrease. Only small data sets are used for this
experiment because of the O(l2) storage requirement of
full. Results show that semi-full is significantly worse
than others. Therefore, randomness in selecting the
working set is very essential.

We also notice that when C = 1, full is worse than
perm. We think this is because when C is small, the
problem is easy and the number of CD steps is less than
l2, the total number of pairs by the full setting. In such

a situation, each pair is considered at most once and the
sequence may not be random enough.

Between random and perm we observe that perm is
slightly better. Experiments in Section 5.2 include more
comparisons on them.

5.2 Linear SVM without Bias: Comparison
Between One-variable and Two-variable CD We
compare the following settings.

• 1-CD-perm: one-variable CD by permuting all indices
first and then applying cyclic updates.

• 1-CD-random: one-variable CD by a random selection
of indices for update.

• 2-CD-perm: two-variable CD by permuting all indices
first and then applying (3.20).

• 2-CD-random: two-variable CD by a random selection
of indices for update.

Results of using C = 1 and 8, 192 are in Figure 4.
Results indicate that two-variable CD needs fewer

steps than one-variable CD. The reason is apparently
that more information is considered. However, the cost
per CD step is also higher, so in terms of running time,
two-variable CD is not faster when C = 1. If C is
increased to 8, 192, the difference on the number of CD
steps is bigger. For some problems, the running time of
two-variable CD is significantly shorter. It is well known
that using a larger C aims to better fit the data, so the
optimization problem becomes more difficult. In such a
situation, the proposed two-variable CD is very useful.

Another result in Figure 4 is the comparison be-
tween two working-set selections: perm and random. We
may expect that for one-variable CD such a compar-
ison has been conducted in some existing works, but
interestingly we are not aware of any. In Figure 4, 1-
CD-perm is consistently better than 1-CD-random and
the gap is sometimes significant. The same result holds
for two-variable CD. The reason might be that for the
random selection, some variables are less frequently up-
dated than others.

In the above experiment, shrinking is not used. We
give comparison results in Section V.II of supplementary
materials. Results show that shrinking for two-variable
CD is generally as effective as for one-variable CD.

5.3 Comparison Between CD for Linear SVM
with/without Bias We compare the following two
settings.

• 2-CD-nobias: this is the same as 2-CD-perm in Section
5.2.

• 2-CD-bias: the two-variable CD discussed in Section
4.1 for solving (2.3).
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C
=

1
C

=
8,

19
2

(a) a9a (b) news20.binary (c) yahoojp

Figure 4: A comparison between one-variable and two-variable CD for l2 loss with C = 1 and 8, 192. For each set
under a given C, x-axis in the upper sub-figure is the number of CD steps, while the x-axis in the lower sub-figure
is the running time (in seconds).

(a) a9a (b) news20.binary (c) rcv1 train.binary (d) yahoojp

Figure 5: Comparison of applying two-variable CD to solve dual of SVM with/without bias. We consider the l2
loss and set C = 1. The x-axis is the running time in seconds. Shrinking is disabled.
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Table 1: The percentage of CD steps that are wasted in
the first 200 cycles.

Data set 2-CD-bias 2-CD-nobias
a9a 59.00% 14.77%
ijcnn1 79.88% 53.17%
yahoojp 83.11% 54.67%
rcv1 train.binary 87.82% 66.94%
real-sim 95.17% 22.40%
news20.binary 67.12% 21.00%

Table 2: A summary of CD methods’ running time for
SVM with/without the bias. Kernel: CD via greedy
working-set selection (from [23]). Linear: CD via
cyclic/random selection (this work). A > B means A
is faster than B.

SVM problems and CD methods
no bias with bias

1-CD 2-CD 2-CD
kernel < > or ≈
linear ≈ �

They differ only in the solved dual optimization prob-
lem: a linear equality constraint appears in the problem
solved by 2-CD-bias, while does not for 2-CD-nobias.
Note that their optimal objective values are different,
but it is suitable to compare the convergence speed by
using their relative difference to the respective optimal
value. By considering the l2 loss, we present results in
Figure 5. We show the convergence along the running
time. We have also checked the relation between the
running time and the test accuracy; see Section V.III of
supplementary materials.

Results indicate that 2-CD-bias is significantly
slower than 2-CD-nobias, an observation fully consistent
with the analysis in Section 4.1. We conduct a further
investigation in Table 1 by showing the percentage of
CD steps that are wasted (i.e., in the CD step the se-
lected (αi, αj) is already optimal for the sub-problem
and cannot be further changed). The percentage of 2-
CD-bias is much higher, indicating that its selected pairs
frequently fail to reduce the function value.

The work [23] conducted a similar comparison for
kernel SVM, where greedy working-set selections are
used in two-variable CD. From Figure 5 in their work,
the difference between with and without bias is much
smaller than ours in Figure 5. The reason is apparently
that greedy selections avoid the situation of many
wasted CD steps described in Section 4.1.

We mentioned that (2.2) is a way to incorporate
the bias term but still avoid the linear constraint in the
dual. In Figure XII and Figure XIV of supplementary
materials, we compare two-variable CD for this setting
with the one having a linear constraint. Results are

similar to those in Figure 5, indicating that the analysis
in Section 4.1 holds even if (2.2) is applied.

6 Discussion and Conclusions

In this work we broadly discuss issues in extending one-
variable CD to two-variable CD for linear SVM. For the
commonly used linear-SVM setting without considering
the bias term, we derive a simple procedure to solve each
sub-problem. The resulting two-variable CD framework
is generally competitive and is superior for difficult
problems. Further, we establish the theoretical linear
convergence. For the SVM formulation with a bias term,
we show that because of the linear constraint in the dual
optimization problem, CD methods are less effective.
We summarize our findings together with those in [23]
for kernel SVM in Table 2. Clearly, CD methods for
kernel and linear SVM behave very differently. Overall,
this work sheds many new insights on the CD methods
for training large-scale linear SVM.

For linear one-class SVM and SVDD, their dual
problems must have a linear constraint. Subsequent
developments of CD methods for them are in [3].
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