Additional Materials for
Two-variable Block Dual Coordinate Descent Methods for
Large-scale Linear Support Vector Machines

Chi-Cheng Chiu* Pin-Yen Lin* Chih-Jen Lin*

I. One-variable CD Method in Hsieh et al. (2008a)
A one-variable CD by Hsieh et al. (2008a) for linear SVM is in Algorithm I.

Algorithm I A one-variable CD by Hsieh et al. (2008a) for linear SVM

1: Input: Specify a feasible o

2: calculate u =, yjo;

3: while « is not optimal do

4: Obtain the permuted indices {m(1),7(2),...,7(l)}

50 forj=1,...,ldo
6: i< m(j)
G yluimz -1 N {1 loss
yiu @i — 14 54 12 loss
7 d = max(—a;, min(C; — a;, —G/Qi;))
8: o; — o+ d
9: u — u + dy;x;

10: end for

11: end while

12: w < u

13: output: (w,) as approximate primal and dual solutions.

II. Details of Two-variable CD for Dual SVM without the Bias Term
II.I Solving Two-variable Sub-problems (3.17)

For easy understanding, we rewrite (3.17) to a more general two-variable optimization
problem:

1 Q11 le} |:d1:| |:d1:|
“ldy d +
dds 2 i o] [Qn Q22| |d2 g do
subject to L; <dy <U;, L; <dy<Us, (i)

x. Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

where L1, Uy, Ly, Us € R. The sub-problem (i) is the same as the one solved in Steinwart
et al. (2011), which studies two-variable CD for kernel SVM. We briefly describe their
solution procedure before ours. They begin with considering (i) without constraints. With
(3.16), the solution is easily seen as

I = —Q2p1 + Quap2 . —Qupz + Quap
! Q11Q2 — Q3 2 Q11Q2 — Q3%

Let the objective function of (i) be

(i)

~

f(dl, d2)'
If (df,d3) is infeasible with
dT > U1 and d; < [LQ,UQ],

an optimal solution must be on the line of d; = U;. A conceptual proof is in Figure Ia: if
a solution d is not on this line, then the line segment connecting d and d* leads to a point
on d; = Uy with a smaller function value because of the strict convexity of the function

f(dy,dz). Thus by fixing d; = U; one can solve a one-variable optimization problem to get
the optimal solution dy. That is,

dy = PldY], dy= in f(dy,ds),
1 [di], d2 argdﬁrfg}%]f(l 2)

where
P[d;] = min(U;, max(L;, d;)), Vi =1,2,
is a projection operation. However, if
dy > Uy, dy > U, (iii)

the above argument can only imply that the solution must be on either d; = Uy or dy = Us;
see the illustration in Figure Ib. Thus Steinwart et al. (2011) proposes solving two one-
dimensional problems where one is by fixing d; = U; and the other is by fixing dy = Us.
Then they compare two objective values to decide the solution.

However, this implementation is slightly complicated. From Figure 1, eight out-of-
boundary cases must be considered. Further for the situation in Figure 1b, it would be
better if we solve one rather than two one-variable sub-problems.

To have a simple procedure, we notice that for the situation in Figure Ib, it is possible
to use the gradient information for deciding which boundary line the optimal solution is at.
Specifically, in Figure II we assume (iii) and have

(Pldy], Plds]) = (U, Ua). (iv)

We then consider two cases. For the first one in Figure I1a, the optimal solution of (i) is on
the line

dy = Uy and satisfies Vo f(P[d}], P[d3]) <0,

Q
)
Il
e
)
ISH
%

do = us
/. A/
Ci'/ d* d A/
d
da = Iz da = 2
dlzll d1:U1 dlzll d1:u1
(a) if df > wy and d} € [l2,us], then the (b) if df > uy and d} > ug, the solution is
solution is on dy = uq. on either di = uy or do = us.

Figure I: illustrations of different situations of d*, the solution without constraints.

do = Uy
dy = Lo : dy = Lo
di =U;
(a) Vo f (P[d], P[d3]) < 0 (see the arrow in (b) V1 f(P[dy], P[d3]) < 0 (see the arrow in
the figure) and the solution is on dy = Us. the figure) and the solution is on dy = Uy.

Figure II: We can check the optimality condition at the point (P[d}], P[d3]) = (U1, Us) to
decide which line the optimal solution is at.
while for the second, it is on

di = Uy and satisfies V, f(P[d}], P[d3]) < 0. (v)

Let us look at the case of Figure IIb in detail. With (iv), the inequality in (v) means that
on the line of dy = Uy, we must increase P[dj] = U; to a larger value (i.e., the negative
gradient direction) in order to decrease the function value. However, this is not possible
because P[d]] is already at the upper bound. In other words, the optimality condition of
di has been satisfied. Therefore, the optimal solution must be on the line of di = U;y. The
case of Figure IIb can be formally extended to the following result.

Theorem I1.1 Assume di = P[d}] is bounded and (P[d}], P[d3]) satisfies the optimality
condition at dy; that is,

QuP[di] + Q12P[d3] + p1 {; 0 if Pl =L (vi)
=z 1] = .

Then (dy,ds) with

7 N Qu le] |:d1:|
do = —|dy d
2 argdzer[rilzl?Uz} 2 (&1] [Qm Q22| |d2 +

[pl pﬂ [Zj

d
= min(Usz, max(La, _Quditp2

) (vi)

is an optimal solution of (i).

All proofs in this section are given in Section VI. The remaining task is to have a clever
setting so that we do not need to separately handle the eight cases, where (d7, d5) is not in
the feasible region.

While the strategy of checking (v) avoids solving two one-variable problems and com-
paring their objective values, it seems we still need to check all eight regions separately.
Fortunately, we can handle Figure Ia and part of Figure Ib together because for the situa-
tion in Figure Ia, the following theorem shows that (P[d}], P[d3]) also satisfies the optimality
condition of d.

Theorem I1.2 If
dy ¢ (L1, Uh),
d; S [Lz, Uz],
then (P[di], P[d}]) satisfies the optimality condition of d;.

Therefore, by Theorem I1.1, we can cover a rather general situation by checking the opti-
mality condition at (P[d]], P[d}]). Further, Theorem II.1 can hold if the roles of dj and dj
are swapped. To ensure that every d* in the situation of Figure Ib is covered (i.e., Theorem
IL.1 on either df or dj is applicable), we need the following theorem.

Theorem I1.3 If

T ¢ (leUl)) d; Qé (L25U2)7
then (P[d}], P[d5]) satisfies either the optimality condition of di or da.

Based on the above theorems we can derive a simple procedure for solving (i). To begin,

if di ¢ (L1,U;) then we know that P[d}] is bounded. We may apply Theorem II.1 by
checking if (P[d}], P[d5]) satisfies the optimality condition of d;. If it does, then (vii) is an
optimal solution.

There are two remaining situations:

dT € (Ll, Ul) (Viii)
or

1 ¢ (L1,Up) and (P]dy], P[d3]) does not satisfy (vi). (ix)

For both situations, we argue that

dy = P[d3)],
_ d. X
dy = min(U;, max(Lq, —M)))
Qu
is an optimal solution. For (viii), we can further consider two situations.
d; S [LQ, UQ], (Xi)
ds ¢ [La, Us]. (xii)

If (xi) holds, then
P[d}] = d] and P[d5] = d5

are already an optimal solution. Though we do not need to apply (x), if we do, then d; = d}
is obtained. On the other hand, if (xii) holds, then from Theorem I1.2, (P[d}], P[d}]) satisfies
the optimality condition of da. With the boundedness of P[d}], we can apply Theorem II.1
to have (x).

For the situation of (ix), we argue that d} ¢ [La,Us]. Otherwise, d5 € [Lq,Us] and
di ¢ (L1,Up) imply from Theorem II.2 that (P[d}], P[d5]) satisfies the optimality condition
of di, a contradiction to the condition in (ix). Next, the property d ¢ [Lg,Us], (ix) and
Theorem I1.3 imply that (P[d}], P[d3]) must satisfy the optimality condition of ds.

A summary of the procedure is in Algorithm II, in which we switch back to a;, oj from
dy,ds for practical implementations. Besides, p; and py are changed back to V;f(a) and
V;f(a), respectively. Clearly, by using the gradient information rather than comparing
objective values, the procedure becomes simple and short. Note that before applying the
procedure discussed in this section, we should check if (o, a;) is already optimal for the
sub-problem (3.17). See details in Algorithm IIT described later in Section II.IIT

IL.IT Proof of Linear Convergence

We prove the linear convergence of the two-variable CD by using (3.20) for the working-set
selection.

The work Wang and Lin (2014) considers two classes of problems (see their Assumptions
2.1 and 2.2) from the following convex optimization problem

miy, f(a), (xii)

where f(a) is proper convex, and X’ is nonempty, closed, and convex. It is shown in Section
3.1 of Wang and Lin (2014) that the dual problem of both [1-loss SVM and [2-loss SVM are
within the problems considered by them.! They then analyzes feasible-descent algorithms,

1. Note that for [1-loss SVM, they point out that some zero data instances must be removed first. This
can be easily handled before solving the optimization problem.

where at the kth iteration the current and the next iterates satisfy

ol = [ak —wp Vf (ak> + ek};, (xiv)
o] < et -)
f (ak> _y (akJrl) > Hak _ ak+1‘ 2’ (xvi)

where inf, w, >0, 8> 0, v > 0, and ||} is the following convex projection operator to the
set X:

]} = argmin = ~ g (xvi)
Yy

For dual SVM,
X =10,C1] x --- x[0,Cy].

From (xvii),

(@]} = [max(min(ag, Cq),0), ..., max(min(oy, Cy), 0))*

Based on Theorem 2.8 of Wang and Lin (2014), we can prove the following linear-convergence
result.

Theorem 11.4 The two-variable CD for dual l1-loss and 12-loss SVM has global linear
convergence. To be specific, the method converges Q-linearly with

f(akth) - < gﬁ% (7 (*)=r). vk=0,

where k s the error bound constant,

¢ = (p—l—HB) <1+/€1+IB>,
w w

and w = min (1,i%fwk> .

For 11-loss SVM, k is derived in (7) of Wang and Lin (2014), and for (2-loss SVM,

k=2(14+p) max Ci, (xviii)

where p = Apmaz(Q), the largest eigenvalue of Q, is the Lipschitz constant of V f(cx).

Proof
To begin, we show that two-variable CD is a special case of the feasible-descent algo-
rithms. The three conditions (xiv)-(xvi) are satisfied with

A
wk‘:L le_)_'_\[lpv ’7257

where A is the proximal term parameter in (3.14).

We consider one iteration to be the collection of CD steps to go over all variables.

(3.20), we let

By = (7(1),7(2)),...., By = (x(l — 1), 7(1))
be the working sets considered in one iteration. Let

af Ll ght12 k+1,1 k+1

Lot =

be solutions updated after each CD step, and we consider

Oél — al,l — a172 — .= a17l.

Because alz_-;, is not changed before we obtain a*+17, dp in (2.5) corresponds to alf;l g

From the optimality condition of the sub-problem (3 14),2 we have for all 1 = 1,.

- - S
o ket 1, kb1, k1, k)
ap - ap "= Vg f(a"T) — NMa ap Z—O’,B;)X.
With

i 7 n
o/fg, = a%f and a’f;l = algf TVi=1,...,1,

we can rewrite (xix) as
lgrl [k+1 — V. f(a k+1,z‘) _)\(agl alf}})}
Next, we let
Jr
ol = [ak — Vfak) + ek} ,

where from (xxi)

ef =t —af + Vif(a¥) = Vif(aFT)

—Me™! —af)

=(1- /\)(0/”1 —af) + Vif(aF) — Vi f (1),
Vi= land i€ B;.

Thus the condition (xiv) holds. Then from the Lipschitz continuity, for all i = 1,...
1 € B;, we have
e < (1= Mot — ol + Vif (&) = Vif ()]
= (1= Mg = af| +|Vif (@) = Vif(a")]
< (1= Nef* = of |+ plla™ = o,

2. See also (xxix) and (xxx).

From

k‘l
B*‘

7l_7

(xix)

(xxi)

.l and

(xxii)

where (xxii) is from (xx). By summing up all the |e¥|2, we can get

l
l€F]2 < D (1 =2t = af P+ p*llat o2
=1

+2(1 - Nplaf ! — al[atHt — o)
= (1= N2 +1?) b+t — ak?
+2(1 = Npllattt — oot — o

< (=2 4107 +2VI(1 = W)) @+ — o P
= (=24 Vip)at — b))’
and the condition (xiv) is satisfied as follows.
el < (1 = A+ Vip)lla™*! —at].

From (3.14) and (xx),
. A . _
£ (@) + Sladt —ad I < f (@F1) =1l (i)
where we let a**t19 be . The summation of inequalities in (xxiii) leads to

Flab) ~ (et = 2o — okt
which is the condition (xvi). Therefore, two-variable CD is a special case of the feasible-
descent algorithm in Wang and Lin (2014), so we can use their results to have the linear
convergence.
Next we derive the x value in (xviii) for /[2-loss SVM. From Wang and Lin (2014), the
[2 loss satisfies their Assumption 2.1, and therefore x can be chosen as

L+p
K =
g

)

where p is the Lipschitz constant of V f(a), and f(«) is o strongly convex. For SVM we
have

IVf(a1) = V()| = Qa1 — az)|| < Amax|cr — 2],

where p = Apax can be the Lipschitz constant. For the o value, from (2.4),

1
(a1 — a2) Qe — az) > Join (20) levr — a2,

Thus,

1
tr_ 2(1 4+ Apax) max Cj.
o =1yl

IL.IIT Shrinking Technique

Because of bound constraints 0 < «; < C}, it is well developed in SVM literature that
some bounded components can be tentatively removed in the optimization process. Then
we solve smaller problems to reduce the running time, a strategy usually referred to as the
shrinking technique Joachims (1998). Though several ways are available to implement the
shrinking technique, we extend the one proposed by Hsieh et al. (2008a) to the two-variable
situation. For a bound-constrained convex problem like (2.3), ¢ is optimal if and only if
the following projected gradient is zero.

Vlf(Oé) if 0 < oy < Ci,
VP fla) = { min(0,V,f(a)) if,; =0,
max(0, V; f(a)) it a; = Cj.

For the one-variable CD, let each cycle of updating all the remained variables be an “outer
iteration.” Assume at the (k—1)th outer iteration we have the following sequence of iterates.

where [is the number of remained variables at the beginning of the outer iteration. We
further assume that at a*~17, the index i; is selected for possible update. The work Hsieh
et al. (2008a) defines the following two values to indicate the violation of the optimality
condition.

MFL = mjax ijf(akfl’j), I — mjin Vf;f(akfl’j).

Then at each CD step of the next (i.e., the kth) outer iteration, before updating afj_’j to

afj’j +1, the variable «;; is shrunken if one of the following two conditions holds:
afﬁj =0 and Vijf(ak’j) > MF L
k]‘ i b1 (xxiv)
aij’j = Cjand V;, f(a™) <m" 7,
where

ME =
s} otherwise,

) {Mk—l if MF=1 >0,
k—1 if k—1 0
k1 m irm <,
—00 otherwise.
In (xxiv), M*~! must be strictly positive, so Hsieh et al. (2008a) set it to be oo if M*~1 < 0.
The situation for my_1 is similar. Details of one-variable CD with shrinking can be found in
appendix of Hsieh et al. (2008a). The extension of the above setting to two-variable block
CD is straightforward because we can consider steps of going through all pairs in (3.20) as
an outer iteration for calculating M*~! and m*~!.
A summary of the two-variable CD with a shrinking implementation is in Algorithm III.

III. Additional Discussion on Two-variable CD Methods for Linear SVM
with a Bias Term

ITI.I Solving the Sub-problem: Difference from SVM Without the Bias Term

Interestingly, though it is easy to derive a solution procedure for solving (4.21), a comparison
shows that Algorithm II of supplementary materials for solving (i) is shorter in terms of
the code length. One reason is that in Algorithm II, gradient information (or optimality
condition) is used to avoid the exhaustive check of all out-of-boundary cases of a; or ;.
Further, for solving (4.21), we must separately handle the situations of y; = y; and y; = —y;.

IT1.IT Difference Between Linear and Kernel Situations

We point out a difference in solving (4.21) between linear and kernel situations. For the
kernel situation, as mentioned in Section 2.3, Chang and Lin (2011) considers a greedy
working set selection by using the gradient information, so their selected set satisfies

—yiyiVif(a) + V; f(a) # 0. (xxv)
If
Qi — 2yiy; Qi + Qj; = 0, (i)
the following situation in minimizing the quadratic objective function of (4.21) occurs.

—yiy;Vif(a) + V; f()
Qii — 2yiy;jQij + Qjj
By (xxv), this can be easily handled under the IEEE floating-point standard. However, for

linear SVM, because of a random or a cyclic selection, (xxv) does not hold and 0/0 may
occur. It can be easily seen that if

=00 or — o0. (xxvii)

—yiy;Vif(a) + V;f(a) =0,
then the minimum of (4.21) is attained with
dj =0.

Therefore, the selected pair is not useful to reduce the function value. We can conduct a
simple check on (xxv) before solving the two-variable sub-problem.

10

Algorithm IT A procedure to solve the two-variable sub-problem (3.17). Note that for

practical implementations we switch back to use oy, «; rather than dy, ds.

1:
2:

3:

4:

11:
12:
13:
14:
15:
16:
17:

18:

Let p; < Vif(a), pj < V;f(a).
Let

§ + QiiQj; — Q3

use_j + FALSE

calculate
a; < min(Cy, max(0, a; + _ijpi;‘ Qijp;)
a; < min(C}, max(0, oj + M))
if @; > C; then

if Qii(a; — i) + Qij(a@; —) + p; <0 then

Qij (@i — os) + p;

&; + min(C}, max(0, o;j —

else
use_j < TRUE
end if
else if a; < 0 then

Qjj)

if Qii(av —)+ Qi5(aj — o) +p; > 0 then

Qij(a — ;) +pj)

a; < min(C}, max (0, oj —

else
use_j < TRUE
end if
else
use_j < TRUE
end if
if use_j = TRUE

a; < min(C;, max(0, a; —

Qij(a

Qjj

j_aj)"'pi))

end if

Qii

(xxviii)

11

Algorithm ITT Two-variable block CD for solving (2.3) with a shrinking implementation.

1: Given €, a and the corresponding w =), y;oux;.

2: Remove indices with x; = 0

3: Let M < co,m ¢+ —oco and A «+ {1,...,1}.

4: while « is not optimal do

5 Let M <+ —o0, m + oc.

6: for all paris in (3.20) do

7 Let {i,7} be the current pair as the working set.

8 G, = yifwTa:i — 1+ Dy, Gj = ijij -1+ Djjoz]-
9: Qij = yiy;x] x;

10: PG; + 0, PGJ'(*O

11: fort=1i,j5 do

12: if oy =0 then

13: if G, > M then A<« A\ {t}, PG; + 0,PG; + 0 and break
14: if Gt <0 then PGt — Gt

15: else if oy = C; then

16: if Gy <m then A<« A\ {t} PG; + 0,PG; < 0 and break
17: if G; >0 then PG; <+ G;

18: else

19: PGy + Gy

20: end if

21: M < max(M, PGt), m < min(m, PGy)
22: end for

23: (di, dj) — (Oéi, Ozj)

24: if PGZ'#OOI‘ PGjyéOthen

25: (@, @) + Solve (i) by Algorithm II
26: end if

27: fort=14,5 do

28: if ay 7é oy then

29: W — w+ (o — o)yt

30: Qp — Oy

31: end if

32: end for

33: end for
34: if M —m < e then
35: if A={1,...,l} then

36: break

37 else

38: A+ {1,...,1}, M < oo,m ¢+ —oo. (i.e., no shrinking at the next iteration)
39: end if

40: end if

41: if M <0 then M+ oo else M «— M
42: if m>0 then m <+ —oc0 else m <+ m
43: end while

12

Algorithm IV Solve the sub-problem (3.17) without considering the proximal term.

1: Let p; + V;f(a), pj + V,f(a).
2: Let

§ + QuiQj; — Q3
use_j < FALSE

3:

4:

5 0+ Quay + Qijoy — p;

6: if Qij < 0 then

T if Q;C; < § then

8: return (C;,0)

9: else if Q;;C; > 5 then

10: return (0,C})

11: else if 0 < § then

12: return (&, 0)

13: else B

14: return (0, Qi”)

15: end if

16: else if Qij > 0 then

17: if 0 > § then

18: return (0,0)

19: else if Q;;C; + QUCj < § then

20: return (CZ,C]>

21: else if);;C; < 5 then
0-Qi;C;

22: return (—5, Cj)

23: else B

24: return (0, ‘i)

25: end if ’

26: end if

27: else

28: run line 3-18 in Algorithm II

29: end if

if 6 =0 and (—Qj;pi + Qijp; =0 or — Qiipj + Qijp; = 0) then

// (Ixx) and (Ixxi) both occur

13

IV. Details of Experimental Settings

Our implementation is extended from the software LIBLINEAR Fan et al. (2008), which
provides an implementation of the one-variable CD by Hsieh et al. (2008b). Except in
Section V.II, we do not incorporate the shrinking technique. All experiments are conducted
on a computer with an AMD EPYC 7401 24-Core Processor.

IV.I Datasets

For experiments we consider data sets listed in Table I. All sets except yahoojp and
yahookr are publicly available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

V. Complete Experimental Results on /1- and /2-loss SVM

To begin, Figure III presents results discussed in Section 5.1 for comparing working-set
selections.

In the rest of this section we present complete results of using {1 and {2 losses by including
two more data sets, covtype.scale and yahookr. The experimental settings are the same
as in the main paper.

V.I Linear SVM without Bias: Comparison between One-variable and
Two-variable CD

We give complete results of experiments conducted in Section 5.2. For [2-loss SVM, results
with two more sets are presented; see Figures IV and V. For results of [1-loss SVM, which
are not presented in the main paper, see Figures VI and VII.

V.II Effect of Shrinking Techniques for Two-variable CD for the Dual of
Linear SVM Without the Bias Term

To check the effect of the shrinking technique in two-variable CD, we compare the following
settings.

e 1-CD: this is the same as 1-CD-perm in Section 5.2.
e 1-CD-shrinking: shrinking technique is incorporated into 1-CD.

2-CD: this is the same as 2-CD-random in Section 5.2.

2-CD-shrinking: shrinking technique is incorporated into 2-CD.

Table I: Data statistics.

data set ‘ #data ‘ #features H data set ‘ #data ‘ #features
ijenni 49,990 22 || a9a 32,561 123
news20.binary | 19,996 1,355,191 || rcvl_train.binary | 20,242 47,326
real-sim 72,309 20,958 || yahoojp 176,203 832,026
yahookr 460,554 | 156,436,656 || covtype.binary 581,012 54

14

For [2-loss SVM, in Figure VIII we present a timing comparison between with and without
shrinking by using C' =1 and §8,192. For [1-loss SVM, results are presented in Figure IX.
From the figures we see that shrinking for two-variable CD is generally as effective as for
one-variable CD.

V.III Additional Results to Compare Linear SVM with/without the Bias
Term

We begin with giving complete results of experiments in Section 5.3 to compare two-variable
CD on linear SVM with and without the bias term. Results for [2- and [1-loss SVMs are
respectively in Figure X and Figure XI.

Recall in (2.2) we mentioned a well-known trick to embed the bias term into the model
vector w. The dual problem then does not have a linear constraint. To see if the same
argument in Section 4 holds, we compare two-variable CD for this setting with the one
that explicitly handle the bias (i.e., the dual has a linear constraint). Results in Figure XII
show that the gap between the two approaches is smaller than that in Figure 5. However,
the two-variable CD for the setting in (2.2) is still generally faster because of no linear
constraint in the dual.

Next we aim to check the test accuracy. In Figure 5 we have shown the dramatic
difference on the function-value reduction when two-variable CD is applied to dual linear
SVM with/without a linear constraint. We further check if the same observation holds
on the test accuracy. We split each data set to 80% for training and 20% for testing
and use cross-validation to find their C parameters. In Figures XIII-XIV we present test
accuracy versus the cumulative number of CD steps. In each figure test accuracy of linear
SVM with/without the linear constraint is compared, though in Figure XIV the approach
without the linear constraint applies the trick in (2.2) to embed the bias term in the model.
Results indicate that two-variable CD for linear SVM with the bias term is still slower.

15

10°

== full
semi-full
os random
102 — perm
10
\
10° S
N
0 1 2 3 4 5
le6
a%a
10°
== full
semi-full
os random
— perm

00 05 1.0 15 20 25 3.0 35
le8

a%a

full
semi-full
ndom

— perm

00 05 1.0 1.5 2.0 25 3.0 3.5. 4.0 45
le5

rcvl_train.binary

c=1

10°
G == full
semi-full
o e random

7e-01 — perm

5e-01

4e-01

3e-01

2e-01 A °
0.0 0.5 1.0 15 2.0 25
le8

rcvl_train.binary

c=8,192

full
semi-full
random
— perm

00 05 1.0 1.5 2.0 25 3.0 3.5 4.6 4.5
le5

news20.binary

10°
= full
7e-01 semi-full
o= random
se-01 — perm

4e-01

3e-01

2e-01

107

7e-02

5e-02 M
0.0 0.5 1.0 15 2.0
le8

news20.binary

Figure III: A comparison of strategies for selecting the two-variable working set for [2-loss
SVM. The z-axis is the number of CD steps, while the y-axis (log-scaled) is the relative
difference to the optimal function value. Only small sets are used because of the O(I?)

storage requirement of full.

16

- LCopem -+ 1perm == 1COpem
1-CD-random 107 1-CD-random 1-CD-random
o 2.CD-perm * 2.CDperm < 2coperm . perm
— 2CDrandom — 2CDrandom — 2CDrandom — 2CDrandom
107
107
107]
0 1 2 3 4 5 6 0.0 0.5 1.0 1.5 2.0 25 5 6 7 4 5 6 7
1e6 1e6 1e5 1e6
10° - 10°
= icopem) — Tcopem Ao == 1Copem ‘. == 1Coperm
1.cp-random 107 N 1.cD-random 107 1Co-random B 1Cprandom
2.coperm 0-perm 2 .
2 2Cp-random CD-random 10
10 103 107
10"
4 10|
0% 10% 10
107
100 107] 10
107
00 05 10 15 20 25 30 1 2 3 4 5 6 7 8 00 02 04 06 08 10 12 0.0 02 04 06 08 1.0 1.2 1.4 16 1.8
le-1 lel
107
107
10°
107
10°
101
o 1 2 3 i s 20 25 30 00 05 Lo 15 20 25
1e7 1e6 le7
-~ 1copem [perm
107 Leprandom 10795 random
+ 2coperm - CO-perm
— 2.cD-random — 2.cD-random 10° — 2.CD-random
10° .
10°
10° 107
10° 107 10°
107
101° 10| 10
00 05 10 15 20 25 30 35 T 2 3 4 5 6 7 00 05 10 15 20 25 30 00 0.2 04 06 08 1.0 12 14 16
lel 1e2
covtype.scale news20.binary real-sim yahookr

Figure IV: A comparison between one-variable and two-variable CD for {2 loss with C' = 1.
For each set, xz-axis in the upper sub-figure is the number of CD steps, while x-axis in the
lower sub-figure is the running time (in seconds).

17

1CD-random
o 2.C0-perm

-~ 1coperm
— 2D random

le8

— 1Copem
1.co-random

2.co-perm
— 2corandam

00 02 04 06 08 1.0 1.2 14 16
le2

a%a

7e01

o0,

se01,

— 2cDrandom

covtype.scale

10°
-~ Lcoperm
Lc-random
o+ 2COperm
— 2CDrandom
Tea1
seo1
201
se01
1 2 3 4 5 6 7
1e8
10°
= tcopem
Lcp-random
o« 2.C0perm
— 2corandom
re01
seo1
se01]
se01

1e2

se02
ez
00 05 10 15 20 25 3
1e8
10° .

-~ Lcopem
7e01 Lc-random
o o« 2CDperm

— 2CDrandom
e01
P N

0.5 1.0 15 70 25

1e3

news20.binary

0.0 0.5 1.0 5 20

10°
- 1copem
Lcprendom
re01 o 2.Coperm
— 2CDrandom
e01
se01
se0
2e01
00 05 1.0 15 20 25 30 35
1e8
10°)
= tcopem
Lcp-random
7e01 coperm
— Zcorandom
e
P
01
P
00 05 10 15 20 25 30

1e2

rcvl_train.binary

real-sim

P v—
Lcp-random
o 2:Coperm
7e01 — 2CDrandom
sel
o1
201
201
00 05 1.0 15 20 25 30
1e9
10
= 1copem
Lcp-randam
s o 2copemn
e — 2corandom
e
s
se01
200
T 2 3 4
1e3
10°-
001
se01
s
*0
20
1 2 3 4 5 6
1e9
10°
701 o 2C0pemm
— 2cprandom
se0l
se01
2001
2001

00 05 10 15 20 25 30 35
led

yahookr

Figure V: A comparison between one-variable and two-variable CD for [2 loss with C' =
8,192. For each set, z-axis in the upper sub-figure is the number of CD steps, while z-axis
in the lower sub-figure is the running time (in seconds).

18

1CD-random
o 2.C0-perm

-~ 1coperm
— 2D random

10°¢

00 05 1.0 15 20 25 30 35 40
167

2Co-random

— 2cDrandom

covtype.scale

-~ Lcopem
Lc-random
< 2CDperm
109 — 2CDrandom
T 2 3 [5
1e7
10°
= tcopem

1.CD-random

D-perm
-C-random

00 02 04 06 08 1.0 12
le2

news20.binary

10°
-~ 1Copem
N Lcprendom
10 o« 2CDperm

— 2.cDrandom

- Tcopem
1.Co-random

00 02 04 06 08

2.0

2.5
1le7

-~ 1cDperm
1CD-random

< 2Coperm
— 2cDrandom

real-sim

— 2

perm
random

—- Tcopem
1Corandom
co-perm

— 2.corandom

o
— 2

oerm
random
perm

random

yahookr

Figure VI: A comparison between one-variable and two-variable CD for [1 loss with C' = 1.
For each set, xz-axis in the upper sub-figure is the number of CD steps, while x-axis in the
lower sub-figure is the running time (in seconds).

19

1CD-random
o 2.C0-perm

-~ 1coperm
— 2D random

1e9

- icopem
1.co-random

2.co-perm
— 2corandam

00 05 10 15 20 25 30

107 K
00 02 04 06 08 1.0 1.2 1.4 16 18
1e10

10° s

7e01,

— 2cDrandom
se.01,

e01

001,

200,

10" o
00 02 04 06 08 _10
led

covtype.scale

10°
-~ 1Copem
Lc-random
fe01 © s 2CD-perm
— 2CDrandom
seo1
e
se01
2001
107
1 2 3 4
1e8
10°
= tcopem
et Lcp-random
o« 2.C0perm
— 2corandom
seo1
se01]
201
s
2001 s
G
107

00 02 04 06 08 1.0 1.2 1.4 16 18
le2

ijcnnl

1
1le8

- 1coperm
1.CD-random

s 2Coperm

— 2cDrandom

news20.binary

-~ 1Copem
Lcprendom
o« 2CDperm
101 — 2CDrandom
107
107
0.0 0.5 1.0 15 2.0 2.5
1e8
10°)
= 1copem
Lcp-random
coperm
101 — Zcorandom
10?
107
00 05 10 15 20 25

1e2

rcvl_train.binary

10°

real-sim

- 1copem
Lcp-random
© 2COperm
— 2CDrandom
107
102

= tcopem
Lcp-randam
2 s o 2copemn
3 — 2corandom
10
107

10°
10"
102
1 2 3 1

1e9

10°
s 2cDperm

N — 2CDrandom
10!
107

0.0 02 04 06 08 1.0 1.2 1.4 16 1.8
1e9

0.0 05 1.0 1.5 2.0 25 3.0 3.5 40 45
1e3

yahoojp

00 05 10 15 20 25 30
led

yahookr

Figure VII: A comparison between one-variable and two-variable CD for I1 loss with C' =
8,192. For each set, z-axis in the upper sub-figure is the number of CD steps, while z-axis
in the lower sub-figure is the running time (in seconds).

20

00 02 04 06 08 10

12
lel

00 05 1.0 15 20 25 30 35 00 05 10 15 20 25 30 35 00 02 04 06 08 1.0 12 14 16
lel

covtype.scale news20.binary real-sim

20
le3

0.5

1.0

covtype.scale news20.binary real-sim yahookr

c=8,192

Figure VIII: A timing comparison between one-variable and two-variable CD with/without
shrinking for [2-loss SVM with C' = 1 and 8,192. The z-axis is running time in seconds.
Note that the shrinking implementation is stopping-tolerance dependent (see line 34 of
Algorithm IIT). Thus the curve is generated by several runs of using different tolerances. It
may not be strictly decreasing because of timing fluctuation.

21

10°)

107
107
0%
10+ %
10°| ;

10°

00 02 04 06 08 1.0 12 14 1 2 3 4 5 0.0 05 1.0 15 2.0 25 30 35 40
le2 1e2

covtype.scale

10°) 10°

107

0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 71 8 1 2 3 4 5 00 05 10 15 20 25 30 35
led 1e2 1e2 led

covtype.scale news20.binary real-sim yahookr

c=8,192

Figure IX: A timing comparison between one-variable and two-variable CD with/without
shrinking for [1-loss SVM with C' = 1 and 8,192. The z-axis is running time in seconds.
Note that the shrinking implementation is stopping-tolerance dependent (see line 34 of
Algorithm IIT). Thus the curve is generated by several runs of using different tolerances. It
may not be strictly decreasing because of timing fluctuation.

22

- 2ot
100 2-cmnobis

0.0 05 1.0 1.5 2.0 25 3.0 35 40 45

a9a

- 2Cobias
2-CD-nobias

00 05 10 15 20 25
1el

covtype.scale

00 02 04 06 08 1.0 12

rcvl_train.binary

0.2 0.4 0.6 0.8

1.0

lel

news20.binary

2-Co-nobi

real-sim

—- 2Cbias

T 2Cobias
2.CD-nobias

0.0 02 04 06 08 1.0 12 14 16
lel

yahoojp

T
10?
10°
107
10°

00 02 04 06 08 1.0 12 14 16
le2

yahookr

Figure X: Comparison of applying two-variable block CD to solve the SVM problem

with/without a bias term. We consider the (2 loss and set C' = 1.
running time in seconds. Shrinking is disabled.

00 02 04 06 08 10 12
le2

covtype.scale

Figure XI: Comparison

with/without a bias term. We consider the [1 loss and set C = 1.
running time in seconds. Shrinking is disabled.

10| DRI
00 02 04 06 08 1.0 12
lel

rcvl_train.binary

107,

107 "

107|
10

10°|

0.5 1.0 15 2.0

real-sim

2.5
lel

The z-axis is the

10°
10?
10
10°
T 2 3 4 5 7
lel
yahoojp
10°
o
2-conabi
107
10
10
1 2 3 4 5 6 7

of applying two-variable block CD to solve the SVM problem

The z-axis is the

- zcobias
101 s, 2.Co-nobias.

107,

00 05 1.0 1.5 2.0 25 3.0 35 40 45

a%a

00 05 1.0 15 20 25
lel

covtype.scale

00 02 04 06 08 10 12

rcvl_train.binary

N == scobe:
10 101 >.Comabias
3|
10 107
10| 107
107 10
10°
107

0.0 0.2 0.4 0.6 08 10
lel

news20.binary yahoojp

10° 10°
107

107
107

10+
107|
10+ 10
10°|

10°
10°

00 02 04 06 08 1.0 12 14 16
le2

real-sim yahookr

Figure XII: Comparison of applying two-variable block CD to solve dual of SVM
with/without a linear constraint. All settings are the same as Figure 5, though for the
approach 2-CD-nobias we apply the trick in (2.2) to embed the bias term in the model and
still avoid a linear constraint in the dual.

-~ 2cobas
2.C-noblas.

00 02 04 06 08 10 12
lel

covtype.scale

= 2o
93.0 2-CD-nobias

91.0
1 2 3 4 5
le-1
ijcnni
e
000 Temans
97.5

rcvl_train.binary

o e
e oo
97.5 935
97.0 0
925 .'I
96.5 i
9200}
96.0 :
91.5|}
1 2 3 4 5 6 0.0 0.5 1.0 15 2.0
lel
news20.binary yahoojp
98.5 88 == 2-CD-blas
oo
87| L L.mmemrTiTTERRRIIERTEE
98.0 s
86| .
8s| ¢
84 i
83|:
96.5 sl

0.0 02 04 06 08 10 12 14
1le2

real-sim yahookr

Figure XIII: Comparison of applying two-variable block CD to solve dual of SVM
with/without a linear constraint. All settings are the same as Figure 5 but we use cross-
validation to find their C' parameters, and the y-axis is changed to the test accuracy

24

98,
-~ 2CDbias == 2cobias == 2Cobias 94.0 == 2Cobias

nobias 93.0p | 2cDnoviss -CD-nobias -CD-nobias.
o b s oo oo
85 935
92.5 97.0
84 96.5 ". 93.0
83 96.0 .: 92.5 :'
955); 920!
82 91.0 H H
95.0(!
. 91.5
0 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6 7 0 05 1.0 15 2.0
le-1 le-1 lel
a%a news20.binary yahoojp
88 ’
6r 98.0 98.0 87
86
75 97.5 H
85|}
74, 97.0 :" 84 ‘.'
i 83!
y ! 9.5/ I
730 : : 82
96.5 ; I
%601 8if T
72 ! 80 2-CD-nobias
00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14 0.0 0.5 1.0 15 2.0 2.5 00 02 04 06 08 1.0 12 14 16
lel le2
covtype.scale rcvl_train.binary real-sim yahookr

Figure XIV: Comparison of applying two-variable block CD to solve dual of SVM
with/without a linear constraint. All settings are the same as Figure 5, though we use
cross-validation to find their C' parameters, and for the approach 2-CD-nobias we apply the
trick in (2.2) to embed the bias term in the model and still avoid a linear constraint in the
dual. The y-axis is changed to the test accuracy.

25

VI. Proofs of Theorems in Section I1
VI.I Proof of Theorem II.1

Proof Because do is an optimal solution of (vii), it satisfies the following optimality
condition

>0 ifCZ2<U2,

_ (xxix)
<0 if do > Lo.

Q12d1 + Q22da + p2 {

This is already the optimality condition corresponding to dz, so our remaining task of
proving that (di,dy) is optimal is to show that

- - >0 if di < Uy,
dy + do + - _ XXX
Q11d1 + Q12ds Pl{go itd, > L. (xxx)
We prove
Qu1d1 + Qr2d2 +p1 <0
under the situation of
di >U; > Ll, Jl =Uj. (XXXi)
The proof of the other situation
di <Ly <Uy, dy =Ly
is the same. Note that if
Uy = L,
then (xxx) directly holds because no d; € (L1,U;). Now we consider two cases.
Case 1: Q12 >0
From (x1v),
—(Qu2d1 +p2) £ _—Qu2d1 — p2 — Q2ds
Q22 2 Q22
—Qn2(dy — di
:—Q12(1= dy) >0, (xxxii)
Q22
where (xxxii) is from Q12 > 0 and (xxxi). Thus in finding dy in (vii) we intend to increase
d5 to da.
We further consider two situations. First,
—(Q12d
(Q12d1 + p2) < L,
Q22
Then (xxxii) implies
—(Q12d
& < (Q12d1 + p2) < Ly

Q22 -

26

and with (vii),
ds = P[d}] = Lo. (xxxiii)
By (xxxi), (xxxiii), and the assumption in (vi), we have the optimality condition
Qud1 + Qi2ds + p1 = Q11 P[d}] + Q12P[d3] + p1 < 0. (xxxiv)
If on the other hand

—(Q12d1 + p2)
Q22

> Lo, (xxxV)

then (vii) and (xxxv) imply

—(Q12d1 + p2) —(Q12d1 + p2)

dy = min(Us, < . XXXVi
? (L Q22) Q22 ()
Therefore,
] (Quad
Q22
:—_Qm(dl _ dl), (xxxvii)
Q22
where (xxxvii) is from (xxxii). Then
QIICZI + Qle_Q + 1 :QH(JI —dj) + ng(Jg —d3) (xxxviii)
02
<(dy — dT)M (xxxix)
Q22

<0

) (x1)

where (xxxviii) is from (xIv), (xxxix) is from (xxxvii), and (xl) is from the positive semi-
definiteness of [83 8;2 |. This leads to the optimality condition in (xxx).
Case 2: Q12 <0

By a similar derivation to (xxxii),

M_d;:M<o. (xli)

Q22 Q22 o
Thus we intend to decrease dj to da.
We also consider two cases. First,
—(Q12d
(Q12d1 + p2) > U,
Q22

Then (xli) and (vii) imply

dy = P[d5] = U,

By (xxxi) and the assumption in (vi), we have the optimality condition in (xxxiv). If on
the other hand,

—(Q12d; + p2)

< Us, xlii
Q22 2 (i)

then (vii) and (xlii) imply

—(Q12d1 + p2) —(Q12d1 + p2)

dy = max(Lo, >) xliii
2 (L2 Q22) Q22 (i)
Therefore,
- —(Q12d1 + P
dy— d5 > (Qu2d1 + P) e
Q22
—Q12(dy — d¥))
= 27 xliv
Q22 (cliv)
where (xliv) is from (xli). With Q12 < 0, we obtain the same inequalities in (xxxviii)-(x1)
and the optimality condition in (xxx). []
VI.ITI Proof of Theorem II.2
Proof Consider
diy > Uy.

From (3.16), the optimal solution satisfies
Q11 Qm] [dq [Zh] {0]
e !
[Qu Q2] |d5 D2 0 (xIv)

QuUi + Qi2P[d5] + p1
= Qud] + Q12d5 + p1 + Q11 (U1 — d7)
=Qu(U —dy) <0,

and then

so the optimality condition is satisfied. The situation for
di <Ly

is similar. [|

28

VI.III Proof of Theorem I1.3
Proof We consider
L; < UZal = 1a 27 (XIVI)

because if L; = Uj;, the optimality condition directly holds.

We assume P[dj] = U;. The situations of P[d}] = L; is similar because of the symmetry.
Assume the result is wrong. Then (P[d]], P|d3]) satisfies neither the optimality condition
of di nor that of da. We further consider two cases P[d3] = Ly and Us.

Case 1: P[d}] = Lo

Define Ay and A, as

Ay = Pld}]—d = Uy —dl <0,

(xlvii)
Ay = Pld5)—d5 = Ly—d5>0.
Because optimality conditions are violated, with (xlvi),
Q11 P[d]] + Q12P[d5] + p1 > 0,
. . (xlviii)
Q12P[d]] + Q22 P[d3] + p2 < 0.
With (xlv) and (xlvii), (xlviii) becomes
Q1141 4+ Q1249 > 0, ‘
(xlix)
Q1241 + Q2242 < 0.
We then have
A1 #0or Ay #0. O]
Otherwise, (xlix) cannot hold. From (xlix) and (1),
Q1141 +Q12A2} |:Q11 Q12:| |:A1:|
A A =|A; A < 0.
A1 A [Q12A1 + Q22402 (A1 4] Q12 Q22 |A2
However,
[Qn Q12]
Q12 Q2
is positive semi-definite, so there is a contradiction.
case 2: Plds] = Us
We have Ay <0, As < 0. The violation of the result implies
Q1141 + Q1242 > 0,
Q1241 + Q2242 > 0.
With (1),
Q1141 +Q12A2} [Qn Qlﬂ I:A1:|
A A =[A; A <0,
(A1 A {Q12A1 + Q22402 (A1 A Q12 Q2] |A2
a contradiction to the positive semi-definiteness of [8“ 812] [|
12 22

29

VII. Solving the Two-variable Sub-problem (3.17) Without the Proximal
Term

It is possible to consider a sub-problem without the proximal term, though the procedure
becomes more complicated. Here we show details.
VII.I The Situation of Q;; =0 or ();; =0

For [1-loss SVM, without the proximal term it is possible that Q; = 0 or)j; = 0. Assume
Qii = 0. Then

Qi = ||lzil> = 0
implies that x; = 0. From

l
Vif(e) =) yiysa] mjo; — 1
o

=-1<0, Ve,
by the optimality condition, a;; = C; is optimal for the dual problem (2.3). We can identify

these zero instances before running the CD algorithm.

VII.II Hessian is Positive Semi-definite

For [2-loss SVM, from (2.4), Hessian is always positive definite. However, for [1-loss SVM,
Hessian may be only positive semi-definite and it is possible that

Q@2 — Qi =0. (1i)

If Hessian is positive definite, then the solution procedure in Section II can be used. Here
we address the situation if (li) occurs. From Section VILI, after removing zero instances in
the beginning, we have

Q11 > 0 and Qg > 0,

and therefore (1i) implies

Q12 # 0. (lii)

When the Hessian is positive definite, in Section II we calculate dj and d3, which play an
important role in Algorithm II. With (li), they are not well defined because a division by
zero occurs. However, we will show that an extension of (ii) to define d} and d; is possible.
We begin with checking the numerator of dj and d in (ii). From

Q11(—=Q22p1 + Qi2p2) = —Q12(—Q11p2 + Q12p1),

the two numerators have the following relationship.

—Qa2p1 + Qi2p2 = _52112(—6211]72 + Q12p1)- (liii)

30

Now assume that

—Q22p1 + Q1202 # 0. (liv)

We will discuss later how to handle the situation if this value is zero.
From (li), (liii), and (liv), we extend (ii) to define

1> if — Qaop1 + Q12p2 > 0,

! —00 if — Qa2p1 + Qu2p2 < 0,
(Iv)

1> if — Quip2 + Q12p1 > 0,

? —0 if — Q11p2 + Qu2p1 < 0.

These values can be projected to lower or upper bounds if we make the following assumption.

Assumption VII.1 We have
—o0< L <U;<o0, i=1,2. (lvi)

For [1-loss SVM, whose Hessian may be only positive semi-definite, this assumption holds
because in (2.1) we choose C' < 0.

We show in the following theorem that Theorem II.1 and Theorem II.3 can be extended
here, so the same Algorithm II can be used without modifications. Note that Theorem II1.2
is no longer needed because from Assumption VII.1 and (lv), the condition dj € [Lg, Us]
never holds.

Theorem VIIL.2 Under Assumption VI 1, if

Q11Q22 — Qi =0 (Ivii)
and dif,ds are defined as in (Iv), then Theorems I1.1 and II.3 hold.

Proof We begin with checking Theorem II.1. The same proof can almost be used. We
also prove only the situation

&> Uy, dy = Uy
From the definition in (Iv), this in fact means
di = oo, Pld}] =di = Uy. (Iviii)
Further, (Iviii) and (lv) imply
—Q22p1 + Qi2p2 > 0. (lix)

We now consider Q12 > 0, while the proof for ()12 < 0 is similar. Note that we have Q12 # 0
from (lii).
The same as in Theorem II.1, we further consider two situations. First,

—(Q12d1 + p2) < L.
Q22

31

From (lix), Q12 > 0, (liii) and (Iv), we have

_(ngi;p?) < Lo. (Ix)

Then (xxxiii) and (xxxiv) follow, so we have the needed optimality condition
If on the other hand,

d5 =—00 <

—(Q12d1 + p2)
Q22

then (xliii) holds. We now check the optimality condition of d;:

> L25

Q11d1 + Q12ds + p1
—(Q12d1 + p2)

<Qud1 + Q12 +p1 (Ixi)
Q22
_ —Q12p1 + Q2201 (Ixi)
Q22
<0, (Ixiii)

where (Ixi) is from Q12 > 0 and (xliii), (Ixii) is from (lvii), and (Ixiii) is from (lix).
Next, to extend Theorem I1.3 we follow the same setting to consider

dj = +o0, Pld]]=Uy (Ixiv)

and check the two cases P[dj] = Ly or Us.
Case 1: P[d}] = Lo
For this case

dy = —oo and P[d5] = La.
From (liii) and (lv),
Q12 > 0. (1xv)
If the result in Theorem II.3 is wrong, both optimality conditions are violated and

QU1 + Qi2L2 +p1 > 0,
Q12U1 + Q22L2 + p2 < 0.

With (li) and (Ixv),

Q22(Q11U1 + Q12L2 + p1)
>0 (Ixvi)

>Q12(Q12U1 + Q22L2 + p2)

leads to

—Q22p1 + Qi2p2 < 0. (Ixvii)

32

From (lv), we obtain a contradiction to dj = oo in (Ixiv).
Case 2: P[d}] = Us
For this case

d; = oo and P[d5] = Us.
From (liii) and (lv),
Q12 < 0. (Ixviii)
The same with the last case, we assume the optimality conditions are violated and therefore

Q11U + Qi2L2 +p1 > 0,
Q12U1 + Q22L2 + p2 > 0.

With (Ixviii), we can have (Ixvi) and (Ixvii). Then (Ixvii) contradicts the assumption. H

We now show that the same procedure in Algorithm II can be used. From (lv) and
Assumption VII.1,

T ¢ [Ll, Ul] and d; ¢ [LQ, UQ] (1X1X)

Then P[dj] and P[d}] are bounded. We check if (P[d}], P[d5]) satisfies the optimality
condition of d;. If it does, then from Theorem VII.2, we can apply Theorem II.1 to use (vii)
for obtaining a solution. Otherwise, from Theorem VII.2 and (Ixix), we apply Theorem I1.3
to have that (P[d}], P[d}]) satisfies the optimality condition of d2. Then we apply Theorem
II.1 to obtain an optimal solution as in (x). Therefore, the solution procedure is exactly
the same as the procedure in Algorithm II for positive-definite Hessian.

Next we discuss the rare situation where both

Q11Q2 — Qi =0 (Ixx)

and

—Q22p1 + Qi2p2 = 0. (Ixxi)

The objective function can be written as

1 1
§Qnd% + Qr2d1da + 5@2261% + p1d1 + pads
1

=——(Qud1 + Qi2d2 + p1)* + constant, (Ixxii)
2Qu1

where for the linear term of da, we use (Ixx)-(Ixxi) and (lii) to have

Qi2prda _ Q3yp2ds
Q11 Q11Q22

= pads. (lxxiii)

33

From (Ixxii), the optimization problem becomes to find a point in the feasible region
L1 <dy <Up, Ly <dy <Us, (Ixxiv)
that is the closest to the plane
Qudi + Qr2d2 +p1 = 0. (Ixxv)

We then give the details in Section VILIII to design Algorithm IV for finding an optimal
solution.

VII.III Solution Procedure when (Ixx) and (Ixxi) Both Happen

It is easy to identify an optimal solution by checking the geometric relationship between
the feasible region and the straight line in (Ixxv). If Q12 < 0, then the line has a positive
slope. Thus we have the following four possible situations.

1, U2) / (U1, Us)
/ -
pd

(L1, Lo) - (U1, L

If

QuUi + Qi2L2 +p1 <0, (Ixxvi)

then the whole feasible region is on the left side of the line and (U, L) is the closest point.
If (Ixxvi) dose not hold and

Qu1L1+ Q2L +p1 <0,

then from the figure, a line segment is the interaction between the line and the region. Any
point on this line segment is an optimal solution. We can simply consider the interaction
point on the horizontal line dy = Lo:

g - —Q12L2 — p1
= w122 7P
Q11

Other situations are similar. A summary of the procedure is in Algorithm IV. For practical
implementations we switch from dy, dz back to oy, a; by

, dy = Lo. (Ixxvii)

U =C; —aj, L1 =—a; and p1 =V, f(a).
Note that the plane (Ixxv) becomes
Qiit + Qijay = 6 = Qi + Qija; — pi, (Ixxviil)

where (&;, @) and (a4, aj) are the variable and the current iterate, respectively.

34

References

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM TIST,
2(3):27:1-27:27, 2011.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLIN-
EAR: a library for large linear classification. Journal of Machine Learning Research, 9:
1871-1874, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In ICML, 2008a.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sun-
dararajan. A dual coordinate descent method for large-scale linear SVM. In Proceedings
of the Twenty Fifth International Conference on Machine Learning (ICML), 2008b. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.

Thorsten Joachims. Making large-scale SVM learning practical. In Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

Ingo Steinwart, Don Hush, and Clint Scovel. Training SVMs without offset. JMLR, 12:
141-202, 2011.

Po-Wei Wang and Chih-Jen Lin. Iteration complexity of feasible descent methods for convex
optimization. JMLR, 2014.

35

