
Additional Materials for
Two-variable Block Dual Coordinate Descent Methods for

Large-scale Linear Support Vector Machines

Chi-Cheng Chiu∗ Pin-Yen Lin∗ Chih-Jen Lin∗

I. One-variable CD Method in Hsieh et al. (2008a)

A one-variable CD by Hsieh et al. (2008a) for linear SVM is in Algorithm I.

Algorithm I A one-variable CD by Hsieh et al. (2008a) for linear SVM

1: Input: Specify a feasible α
2: calculate u =

∑
j yjαjxj

3: while α is not optimal do
4: Obtain the permuted indices {π(1), π(2), . . . , π(l)}
5: for j = 1, . . . , l do
6: i← π(j)

G←

{
yiu

Txi − 1 l1 loss

yiu
Txi − 1 + αi

2Ci
l2 loss

7: d = max(−αi,min(Ci − αi,−G/Qii))
8: αi ← αi + d
9: u← u+ dyixi

10: end for
11: end while
12: w ← u
13: output: (w,α) as approximate primal and dual solutions.

II. Details of Two-variable CD for Dual SVM without the Bias Term

II.I Solving Two-variable Sub-problems (3.17)

For easy understanding, we rewrite (3.17) to a more general two-variable optimization
problem:

min
d1,d2

1

2

[
d1 d2

] [Q11 Q12

Q12 Q22

] [
d1

d2

]
+
[
p1 p2

] [d1

d2

]
subject to L1 ≤ d1 ≤ U1, L1 ≤ d2 ≤ U2, (i)

∗. Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

1

where L1, U1, L2, U2 ∈ R. The sub-problem (i) is the same as the one solved in Steinwart
et al. (2011), which studies two-variable CD for kernel SVM. We briefly describe their
solution procedure before ours. They begin with considering (i) without constraints. With
(3.16), the solution is easily seen as

d∗1 =
−Q22p1 +Q12p2

Q11Q22 −Q2
12

, d∗2 =
−Q11p2 +Q12p1

Q11Q22 −Q2
12

. (ii)

Let the objective function of (i) be

f̂(d1, d2).

If (d∗1, d
∗
2) is infeasible with

d∗1 > U1 and d∗2 ∈ [L2, U2],

an optimal solution must be on the line of d1 = U1. A conceptual proof is in Figure Ia: if
a solution d̂ is not on this line, then the line segment connecting d̂ and d∗ leads to a point
on d1 = U1 with a smaller function value because of the strict convexity of the function
f̂(d1, d2). Thus by fixing d1 = U1 one can solve a one-variable optimization problem to get
the optimal solution d̄2. That is,

d̄1 = P [d∗1], d̄2 = arg min
d2∈[L2,U2]

f̂(d̄1, d2),

where

P [di] = min(Ui,max(Li, di)), ∀i = 1, 2,

is a projection operation. However, if

d∗1 > U1, d
∗
2 > U2, (iii)

the above argument can only imply that the solution must be on either d1 = U1 or d2 = U2;
see the illustration in Figure Ib. Thus Steinwart et al. (2011) proposes solving two one-
dimensional problems where one is by fixing d̄1 = U1 and the other is by fixing d̄2 = U2.
Then they compare two objective values to decide the solution.

However, this implementation is slightly complicated. From Figure 1, eight out-of-
boundary cases must be considered. Further for the situation in Figure 1b, it would be
better if we solve one rather than two one-variable sub-problems.

To have a simple procedure, we notice that for the situation in Figure Ib, it is possible
to use the gradient information for deciding which boundary line the optimal solution is at.
Specifically, in Figure II we assume (iii) and have

(P [d∗1], P [d∗2]) = (U1, U2). (iv)

We then consider two cases. For the first one in Figure IIa, the optimal solution of (i) is on
the line

d2 = U2 and satisfies ∇2f̂(P [d∗1], P [d∗2]) ≤ 0,

2

d1 = u1

d2 = u2

d1 = l1

d2 = l2

d̂
d∗

(a) if d∗1 ≥ u1 and d∗2 ∈ [l2, u2], then the
solution is on d1 = u1.

d1 = u1

d2 = u2

d1 = l1

d2 = l2
d̂

d∗

d̂

d∗

(b) if d∗1 ≥ u1 and d∗2 ≥ u2, the solution is
on either d1 = u1 or d2 = u2.

Figure I: illustrations of different situations of d∗, the solution without constraints.

d2 = L2

d2 = U2

d1 = U1

(a) ∇2f̂(P [d∗1], P [d∗2]) ≤ 0 (see the arrow in
the figure) and the solution is on d2 = U2.

d2 = L2

d2 = U2

d1 = U1

(b) ∇1f̂(P [d∗1], P [d∗2]) ≤ 0 (see the arrow in
the figure) and the solution is on d1 = U1.

Figure II: We can check the optimality condition at the point (P [d∗1], P [d∗2]) = (U1, U2) to
decide which line the optimal solution is at.

while for the second, it is on

d1 = U1 and satisfies ∇1f̂(P [d∗1], P [d∗2]) ≤ 0. (v)

Let us look at the case of Figure IIb in detail. With (iv), the inequality in (v) means that
on the line of d2 = U2, we must increase P [d∗1] = U1 to a larger value (i.e., the negative
gradient direction) in order to decrease the function value. However, this is not possible
because P [d∗1] is already at the upper bound. In other words, the optimality condition of
d1 has been satisfied. Therefore, the optimal solution must be on the line of d1 = U1. The
case of Figure IIb can be formally extended to the following result.

Theorem II.1 Assume d̄1 = P [d∗1] is bounded and (P [d∗1], P [d∗2]) satisfies the optimality
condition at d1; that is,

Q11P [d∗1] +Q12P [d∗2] + p1

{
≤ 0 if P [d∗1] = U1,

≥ 0 if P [d∗1] = L1.
(vi)

3

Then (d̄1, d̄2) with

d̄2 = arg min
d2∈[L2,U2]

1

2

[
d̄1 d2

] [Q11 Q12

Q12 Q22

] [
d̄1

d2

]
+

[
p1 p2

] [d̄1

d2

]
= min(U2,max(L2,−

Q12d̄1 + p2

Q22
)) (vii)

is an optimal solution of (i).

All proofs in this section are given in Section VI. The remaining task is to have a clever
setting so that we do not need to separately handle the eight cases, where (d∗1, d

∗
2) is not in

the feasible region.
While the strategy of checking (v) avoids solving two one-variable problems and com-

paring their objective values, it seems we still need to check all eight regions separately.
Fortunately, we can handle Figure Ia and part of Figure Ib together because for the situa-
tion in Figure Ia, the following theorem shows that (P [d∗1], P [d∗2]) also satisfies the optimality
condition of d1.

Theorem II.2 If

d∗1 /∈ (L1, U1),

d∗2 ∈ [L2, U2],

then (P [d∗1], P [d∗2]) satisfies the optimality condition of d1.

Therefore, by Theorem II.1, we can cover a rather general situation by checking the opti-
mality condition at (P [d∗1], P [d∗2]). Further, Theorem II.1 can hold if the roles of d∗1 and d∗2
are swapped. To ensure that every d∗ in the situation of Figure Ib is covered (i.e., Theorem
II.1 on either d∗1 or d∗2 is applicable), we need the following theorem.

Theorem II.3 If

d∗1 /∈ (L1, U1), d∗2 /∈ (L2, U2),

then (P [d∗1], P [d∗2]) satisfies either the optimality condition of d1 or d2.

Based on the above theorems we can derive a simple procedure for solving (i). To begin,
if d∗1 /∈ (L1, U1) then we know that P [d∗1] is bounded. We may apply Theorem II.1 by
checking if (P [d∗1], P [d∗2]) satisfies the optimality condition of d1. If it does, then (vii) is an
optimal solution.

There are two remaining situations:

d∗1 ∈ (L1, U1) (viii)

or

d∗1 /∈ (L1, U1) and (P [d∗1], P [d∗2]) does not satisfy (vi). (ix)

4

For both situations, we argue that

d̄2 = P [d∗2],

d̄1 = min(U1,max(L1,−
Q12d̄2 + p1

Q11
))

(x)

is an optimal solution. For (viii), we can further consider two situations.

d∗2 ∈ [L2, U2], (xi)

d∗2 /∈ [L2, U2]. (xii)

If (xi) holds, then

P [d∗1] = d∗1 and P [d∗2] = d∗2

are already an optimal solution. Though we do not need to apply (x), if we do, then d̄1 = d∗1
is obtained. On the other hand, if (xii) holds, then from Theorem II.2, (P [d∗1], P [d∗2]) satisfies
the optimality condition of d2. With the boundedness of P [d∗2], we can apply Theorem II.1
to have (x).

For the situation of (ix), we argue that d∗2 /∈ [L2, U2]. Otherwise, d∗2 ∈ [L2, U2] and
d∗1 /∈ (L1, U1) imply from Theorem II.2 that (P [d∗1], P [d∗2]) satisfies the optimality condition
of d1, a contradiction to the condition in (ix). Next, the property d∗2 /∈ [L2, U2], (ix) and
Theorem II.3 imply that (P [d∗1], P [d∗2]) must satisfy the optimality condition of d2.

A summary of the procedure is in Algorithm II, in which we switch back to αi, αj from
d1, d2 for practical implementations. Besides, p1 and p2 are changed back to ∇if(α) and
∇jf(α), respectively. Clearly, by using the gradient information rather than comparing
objective values, the procedure becomes simple and short. Note that before applying the
procedure discussed in this section, we should check if (αi, αj) is already optimal for the
sub-problem (3.17). See details in Algorithm III described later in Section II.III

II.II Proof of Linear Convergence

We prove the linear convergence of the two-variable CD by using (3.20) for the working-set
selection.

The work Wang and Lin (2014) considers two classes of problems (see their Assumptions
2.1 and 2.2) from the following convex optimization problem

min
α∈X

f(α), (xiii)

where f(α) is proper convex, and X is nonempty, closed, and convex. It is shown in Section
3.1 of Wang and Lin (2014) that the dual problem of both l1-loss SVM and l2-loss SVM are
within the problems considered by them.1 They then analyzes feasible-descent algorithms,

1. Note that for l1-loss SVM, they point out that some zero data instances must be removed first. This
can be easily handled before solving the optimization problem.

5

where at the kth iteration the current and the next iterates satisfy

αk+1 =
[
αk − ωk∇f

(
αk
)

+ ek
]+

X
, (xiv)∥∥∥ek∥∥∥ ≤ β ∥∥∥αk −αk+1

∥∥∥ , (xv)

f
(
αk
)
− f

(
αk+1

)
≥ γ

∥∥∥αk −αk+1
∥∥∥2
, (xvi)

where infr ωr > 0, β > 0, γ > 0, and [·]+X is the following convex projection operator to the
set X :

[x]+X = arg min
y∈X

‖x− y‖. (xvii)

For dual SVM,
X = [0, C1]× · · · × [0, Cl].

From (xvii),
[α]+X = [max(min(α1, C1), 0), . . . ,max(min(αl, Cl), 0)]T .

Based on Theorem 2.8 of Wang and Lin (2014), we can prove the following linear-convergence
result.

Theorem II.4 The two-variable CD for dual l1-loss and l2-loss SVM has global linear
convergence. To be specific, the method converges Q-linearly with

f
(
αk+1

)
− f∗ ≤ φ

φ+ γ

(
f
(
αk
)
− f∗

)
, ∀k ≥ 0,

where κ is the error bound constant,

φ =

(
ρ+

1 + β

ω

)(
1 + κ

1 + β

ω

)
,

and ω ≡ min

(
1, inf

k
ωk

)
.

For l1-loss SVM, κ is derived in (7) of Wang and Lin (2014), and for l2-loss SVM,

κ = 2(1 + ρ) max
i=1...,l

Ci, (xviii)

where ρ = λmax(Q), the largest eigenvalue of Q, is the Lipschitz constant of ∇f(α).

Proof
To begin, we show that two-variable CD is a special case of the feasible-descent algo-

rithms. The three conditions (xiv)-(xvi) are satisfied with

ωk = 1, β = 1− λ+
√
lρ, γ =

λ

2
,

where λ is the proximal term parameter in (3.14).

6

We consider one iteration to be the collection of CD steps to go over all variables. From
(3.20), we let

B1 = (π(1), π(2)), . . . , Bl̄ = (π(l − 1), π(l))

be the working sets considered in one iteration. Let

αk+1,1,αk+1,2, . . . ,αk+1,l̄ = αk+1

be solutions updated after each CD step, and we consider

α1 = α1,1 = α1,2 = · · · = α1,l̄.

Because αk,̄iBī
is not changed before we obtain αk+1,̄i, dB in (2.5) corresponds to αk+1,̄i

Bī
−αk,̄iBī

.

From the optimality condition of the sub-problem (3.14),2 we have for all ī = 1, . . . , l̄,

αk+1,̄i
Bī

=
[
αk+1,̄i
Bī

−∇Bī
f(αk+1,̄i)− λ(αk+1,̄i

Bī
−αk,̄iBī

)
]+

X
. (xix)

With

αkBī
= αk,̄iBī

and αk+1
Bī

= αk+1,̄i
Bī

, ∀ī = 1, . . . , l̄, (xx)

we can rewrite (xix) as

αk+1
Bī

=
[
αk+1
Bī
−∇Bī

f(αk+1,̄i)− λ(αk+1
Bī
−αkBī

)
]+

X
. (xxi)

Next, we let

αk+1 =
[
αk −∇f(αk) + ek

]+
,

where from (xxi)

eki = αk+1
i − αki +∇if(αk)−∇if(αk+1,̄i)

− λ(αk+1
i − αki)

= (1− λ)(αk+1
i − αki) +∇if(αk)−∇if(αk+1,̄i),

∀ ī = 1, . . . , l̄ and i ∈ Bī.

Thus the condition (xiv) holds. Then from the Lipschitz continuity, for all ī = 1, . . . , l̄ and
i ∈ Bī, we have

|eki | ≤ (1− λ)|αk+1
i − αki |+ |∇if(αk)−∇if(αk+1,̄i)|

= (1− λ)|αk+1
i − αki |+ |∇if(αk)−∇if(αk+1)| (xxii)

≤ (1− λ)|αk+1
i − αki |+ ρ‖αk+1 −αk‖,

2. See also (xxix) and (xxx).

7

where (xxii) is from (xx). By summing up all the |eki |2, we can get

‖ek‖2 ≤
l∑

i=1

((1− λ)2|αk+1
i − αki |2 + ρ2‖αk+1 −αk‖2

+ 2(1− λ)ρ|αk+1
i − αki |‖αk+1 −αk‖

=
(
(1− λ)2 + lρ2)

)
‖αk+1 −αk‖2

+ 2(1− λ)ρ‖αk+1 −αl‖1‖αk+1 −αl‖

≤
(

(1− λ)2 + lρ2 + 2
√
l(1− λ)ρ)

)
‖αk+1 −αk‖2

=
(

(1− λ+
√
lρ)‖αk+1 −αk‖

)2

and the condition (xiv) is satisfied as follows.

‖ek‖ ≤ (1− λ+
√
lρ)‖αk+1 −αk‖.

From (3.14) and (xx),

f
(
αk+1,i−1

)
+
λ

2
‖αk+1

Bi
−αkBi

‖2 ≤ f
(
αk+1,i

)
i = 1, . . . , l̄, (xxiii)

where we let αk+1,0 be αk. The summation of inequalities in (xxiii) leads to

f(αk)− f(αk+1) ≥ λ

2
‖αk −αk+1‖2,

which is the condition (xvi). Therefore, two-variable CD is a special case of the feasible-
descent algorithm in Wang and Lin (2014), so we can use their results to have the linear
convergence.

Next we derive the κ value in (xviii) for l2-loss SVM. From Wang and Lin (2014), the
l2 loss satisfies their Assumption 2.1, and therefore κ can be chosen as

κ =
1 + ρ

σ
,

where ρ is the Lipschitz constant of ∇f(α), and f(α) is σ strongly convex. For SVM we
have

‖∇f(α1)−∇f(α2))‖ = ‖Q(α1 −α2)‖ ≤ λmax‖α1 −α2‖,

where ρ = λmax can be the Lipschitz constant. For the σ value, from (2.4),

(α1 −α2)TQ(α1 −α2) ≥ min
i=1,...,l

(
1

2Ci

)
‖α1 −α2‖2.

Thus,

κ =
1 + ρ

σ
= 2(1 + λmax) max

i=1,...,l
Ci.

8

II.III Shrinking Technique

Because of bound constraints 0 ≤ αi ≤ Ci, it is well developed in SVM literature that
some bounded components can be tentatively removed in the optimization process. Then
we solve smaller problems to reduce the running time, a strategy usually referred to as the
shrinking technique Joachims (1998). Though several ways are available to implement the
shrinking technique, we extend the one proposed by Hsieh et al. (2008a) to the two-variable
situation. For a bound-constrained convex problem like (2.3), α is optimal if and only if
the following projected gradient is zero.

∇Pi f(α) =


∇if(α) if 0 < αi < Ci,

min(0,∇if(α)) if αi = 0,

max(0,∇if(α)) if αi = Ci.

For the one-variable CD, let each cycle of updating all the remained variables be an “outer
iteration.” Assume at the (k−1)th outer iteration we have the following sequence of iterates.

αk−1,1,αk−1,2, . . . ,αk−1,l̄,

where l̄ is the number of remained variables at the beginning of the outer iteration. We
further assume that at αk−1,j , the index ij is selected for possible update. The work Hsieh
et al. (2008a) defines the following two values to indicate the violation of the optimality
condition.

Mk−1 ≡ max
j
∇Pijf(αk−1,j), mk−1 ≡ min

j
∇Pijf(αk−1,j).

Then at each CD step of the next (i.e., the kth) outer iteration, before updating αk,jij to

αk,j+1
ij

, the variable αij is shrunken if one of the following two conditions holds:

αk,jij = 0 and ∇ijf(αk,j) > M̄k−1,

αk,jij = Ci and ∇ijf(αk,j) < m̄k−1,
(xxiv)

where

M̄k−1 =

{
Mk−1 if Mk−1 > 0,

∞ otherwise,

m̄k−1 =

{
mk−1 if mk−1 < 0,

−∞ otherwise.

In (xxiv), M̄k−1 must be strictly positive, so Hsieh et al. (2008a) set it to be∞ if M̄k−1 ≤ 0.
The situation for m̄k−1 is similar. Details of one-variable CD with shrinking can be found in
appendix of Hsieh et al. (2008a). The extension of the above setting to two-variable block
CD is straightforward because we can consider steps of going through all pairs in (3.20) as
an outer iteration for calculating Mk−1 and mk−1.

A summary of the two-variable CD with a shrinking implementation is in Algorithm III.

9

III. Additional Discussion on Two-variable CD Methods for Linear SVM
with a Bias Term

III.I Solving the Sub-problem: Difference from SVM Without the Bias Term

Interestingly, though it is easy to derive a solution procedure for solving (4.21), a comparison
shows that Algorithm II of supplementary materials for solving (i) is shorter in terms of
the code length. One reason is that in Algorithm II, gradient information (or optimality
condition) is used to avoid the exhaustive check of all out-of-boundary cases of αi or αj .
Further, for solving (4.21), we must separately handle the situations of yi = yj and yi = −yj .

III.II Difference Between Linear and Kernel Situations

We point out a difference in solving (4.21) between linear and kernel situations. For the
kernel situation, as mentioned in Section 2.3, Chang and Lin (2011) considers a greedy
working set selection by using the gradient information, so their selected set satisfies

−yiyj∇if(α) +∇jf(α) 6= 0. (xxv)

If

Qii − 2yiyjQij +Qjj = 0, (xxvi)

the following situation in minimizing the quadratic objective function of (4.21) occurs.

−yiyj∇if(α) +∇jf(α)

Qii − 2yiyjQij +Qjj
=∞ or −∞. (xxvii)

By (xxv), this can be easily handled under the IEEE floating-point standard. However, for
linear SVM, because of a random or a cyclic selection, (xxv) does not hold and 0/0 may
occur. It can be easily seen that if

−yiyj∇if(α) +∇jf(α) = 0,

then the minimum of (4.21) is attained with

dj = 0.

Therefore, the selected pair is not useful to reduce the function value. We can conduct a
simple check on (xxv) before solving the two-variable sub-problem.

10

Algorithm II A procedure to solve the two-variable sub-problem (3.17). Note that for
practical implementations we switch back to use αi, αj rather than d1, d2.

1: Let pi ← ∇if(α), pj ← ∇jf(α).
2: Let

δ ← QiiQjj −Q2
ij

use j← FALSE

3: calculate

ᾱi ← min(Ci,max(0, αi +
−Qjjpi +Qijpj

δ
))

ᾱj ← min(Cj ,max(0, αj +
−Qiipj +Qijpi

δ
))

4: if ᾱi ≥ Ci then
5: if Qii(ᾱi − αi) +Qij(ᾱj − αj) + pi ≤ 0 then

ᾱj ← min(Cj ,max(0, αj −
Qij(ᾱi − αi) + pj

Qjj
)) (xxviii)

6: else
7: use j← TRUE
8: end if
9: else if ᾱi ≤ 0 then

10: if Qii(ᾱi − αi) +Qij(ᾱj − αj) + pi ≥ 0 then

ᾱj ← min(Cj ,max(0, αj −
Qij(ᾱi − αi) + pj

Qjj
))

11: else
12: use j← TRUE
13: end if
14: else
15: use j← TRUE
16: end if
17: if use j = TRUE

ᾱi ← min(Ci,max(0, αi −
Qij(ᾱj − αj) + pi

Qii
))

18: end if

11

Algorithm III Two-variable block CD for solving (2.3) with a shrinking implementation.

1: Given ε,α and the corresponding w =
∑

i yiαixi.
2: Remove indices with xi = 0
3: Let M̄ ←∞, m̄← −∞ and A← {1, . . . , l}.
4: while α is not optimal do
5: Let M ← −∞,m←∞.
6: for all paris in (3.20) do
7: Let {i, j} be the current pair as the working set.
8: Gi = yiw

Txi − 1 +Diiαi, Gj = yjw
Txj − 1 +Djjαj

9: Qij = yiyjx
T
i xj

10: PGi ← 0, PGj ← 0
11: for t = i, j do
12: if αt = 0 then
13: if Gt > M̄ then A← A \ {t}, PGi ← 0, PGi ← 0 and break
14: if Gt < 0 then PGt ← Gt
15: else if αt = Ct then
16: if Gt < m̄ then A← A \ {t} PGi ← 0, PGi ← 0 and break
17: if Gt > 0 then PGt ← Gt
18: else
19: PGt ← Gt
20: end if
21: M ← max(M,PGt),m← min(m,PGt)
22: end for
23: (ᾱi, ᾱj)← (αi, αj)
24: if PGi 6= 0 or PGj 6= 0 then
25: (ᾱi, ᾱj)← Solve (i) by Algorithm II
26: end if
27: for t = i, j do
28: if ᾱt 6= αt then
29: w ← w + (ᾱt − αt)ytxt
30: αt ← ᾱt
31: end if
32: end for
33: end for
34: if M −m < ε then
35: if A = {1, . . . , l} then
36: break
37: else
38: A← {1, . . . , l}, M̄ ←∞, m̄← −∞. (i.e., no shrinking at the next iteration)
39: end if
40: end if
41: if M ≤ 0 then M̄ ←∞ else M̄ ←M
42: if m ≥ 0 then m̄← −∞ else m̄← m
43: end while

12

Algorithm IV Solve the sub-problem (3.17) without considering the proximal term.

1: Let pi ← ∇if(α), pj ← ∇jf(α).
2: Let

δ ← QiiQjj −Q2
ij

use j← FALSE

3: if δ = 0 and (−Qjjpi +Qijpj = 0 or −Qiipj +Qijpi = 0) then
4: // (lxx) and (lxxi) both occur
5: δ̄ ← Qiiαi +Qijαj − pi
6: if Qij < 0 then
7: if QiiCi ≤ δ̄ then
8: return (Ci, 0)
9: else if QijCj ≥ δ̄ then

10: return (0, Cj)
11: else if 0 ≤ δ̄ then
12: return (δ̄

Qii
, 0)

13: else
14: return (0, δ̄

Qij
)

15: end if
16: else if Qij > 0 then
17: if 0 ≥ δ̄ then
18: return (0, 0)
19: else if QiiCi +QijCj ≤ δ̄ then
20: return (Ci, Cj)
21: else if QijCj ≤ δ̄ then

22: return (
δ̄−QijCj

Qii
, Cj)

23: else
24: return (0, δ̄

Qij
)

25: end if
26: end if
27: else
28: run line 3-18 in Algorithm II
29: end if

13

IV. Details of Experimental Settings

Our implementation is extended from the software LIBLINEAR Fan et al. (2008), which
provides an implementation of the one-variable CD by Hsieh et al. (2008b). Except in
Section V.II, we do not incorporate the shrinking technique. All experiments are conducted
on a computer with an AMD EPYC 7401 24-Core Processor.

IV.I Datasets

For experiments we consider data sets listed in Table I. All sets except yahoojp and
yahookr are publicly available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/

V. Complete Experimental Results on l1- and l2-loss SVM

To begin, Figure III presents results discussed in Section 5.1 for comparing working-set
selections.

In the rest of this section we present complete results of using l1 and l2 losses by including
two more data sets, covtype.scale and yahookr. The experimental settings are the same
as in the main paper.

V.I Linear SVM without Bias: Comparison between One-variable and
Two-variable CD

We give complete results of experiments conducted in Section 5.2. For l2-loss SVM, results
with two more sets are presented; see Figures IV and V. For results of l1-loss SVM, which
are not presented in the main paper, see Figures VI and VII.

V.II Effect of Shrinking Techniques for Two-variable CD for the Dual of
Linear SVM Without the Bias Term

To check the effect of the shrinking technique in two-variable CD, we compare the following
settings.

• 1-CD: this is the same as 1-CD-perm in Section 5.2.

• 1-CD-shrinking: shrinking technique is incorporated into 1-CD.

• 2-CD: this is the same as 2-CD-random in Section 5.2.

• 2-CD-shrinking: shrinking technique is incorporated into 2-CD.

Table I: Data statistics.

data set #data #features data set #data #features

ijcnn1 49,990 22 a9a 32,561 123
news20.binary 19,996 1,355,191 rcv1 train.binary 20,242 47,326
real-sim 72,309 20,958 yahoojp 176,203 832,026
yahookr 460,554 156,436,656 covtype.binary 581,012 54

14

For l2-loss SVM, in Figure VIII we present a timing comparison between with and without
shrinking by using C = 1 and 8, 192. For l1-loss SVM, results are presented in Figure IX.
From the figures we see that shrinking for two-variable CD is generally as effective as for
one-variable CD.

V.III Additional Results to Compare Linear SVM with/without the Bias
Term

We begin with giving complete results of experiments in Section 5.3 to compare two-variable
CD on linear SVM with and without the bias term. Results for l2- and l1-loss SVMs are
respectively in Figure X and Figure XI.

Recall in (2.2) we mentioned a well-known trick to embed the bias term into the model
vector w. The dual problem then does not have a linear constraint. To see if the same
argument in Section 4 holds, we compare two-variable CD for this setting with the one
that explicitly handle the bias (i.e., the dual has a linear constraint). Results in Figure XII
show that the gap between the two approaches is smaller than that in Figure 5. However,
the two-variable CD for the setting in (2.2) is still generally faster because of no linear
constraint in the dual.

Next we aim to check the test accuracy. In Figure 5 we have shown the dramatic
difference on the function-value reduction when two-variable CD is applied to dual linear
SVM with/without a linear constraint. We further check if the same observation holds
on the test accuracy. We split each data set to 80% for training and 20% for testing
and use cross-validation to find their C parameters. In Figures XIII-XIV we present test
accuracy versus the cumulative number of CD steps. In each figure test accuracy of linear
SVM with/without the linear constraint is compared, though in Figure XIV the approach
without the linear constraint applies the trick in (2.2) to embed the bias term in the model.
Results indicate that two-variable CD for linear SVM with the bias term is still slower.

15

a9a rcv1 train.binary news20.binary

c = 1

a9a rcv1 train.binary news20.binary

c = 8, 192

Figure III: A comparison of strategies for selecting the two-variable working set for l2-loss
SVM. The x-axis is the number of CD steps, while the y-axis (log-scaled) is the relative
difference to the optimal function value. Only small sets are used because of the O(l2)
storage requirement of full.

16

a9a ijcnn1 rcv1 train.binary yahoojp

covtype.scale news20.binary real-sim yahookr

Figure IV: A comparison between one-variable and two-variable CD for l2 loss with C = 1.
For each set, x-axis in the upper sub-figure is the number of CD steps, while x-axis in the
lower sub-figure is the running time (in seconds).

17

a9a ijcnn1 rcv1 train.binary yahoojp

covtype.scale news20.binary real-sim yahookr

Figure V: A comparison between one-variable and two-variable CD for l2 loss with C =
8, 192. For each set, x-axis in the upper sub-figure is the number of CD steps, while x-axis
in the lower sub-figure is the running time (in seconds).

18

a9a ijcnn1 rcv1 train.binary yahoojp

covtype.scale news20.binary real-sim yahookr

Figure VI: A comparison between one-variable and two-variable CD for l1 loss with C = 1.
For each set, x-axis in the upper sub-figure is the number of CD steps, while x-axis in the
lower sub-figure is the running time (in seconds).

19

a9a ijcnn1 rcv1 train.binary yahoojp

covtype.scale news20.binary real-sim yahookr

Figure VII: A comparison between one-variable and two-variable CD for l1 loss with C =
8, 192. For each set, x-axis in the upper sub-figure is the number of CD steps, while x-axis
in the lower sub-figure is the running time (in seconds).

20

a9a ijcnn1 rcv1 train.binary yahoojp

covtype.scale news20.binary real-sim yahookr

c = 1

a9a ijcnn1 rcv1 train.binary yahoojp

covtype.scale news20.binary real-sim yahookr

c = 8, 192

Figure VIII: A timing comparison between one-variable and two-variable CD with/without
shrinking for l2-loss SVM with C = 1 and 8, 192. The x-axis is running time in seconds.
Note that the shrinking implementation is stopping-tolerance dependent (see line 34 of
Algorithm III). Thus the curve is generated by several runs of using different tolerances. It
may not be strictly decreasing because of timing fluctuation.

21

a9a ijcnn1 rcv1 train.binary yahoojp

covtype.scale news20.binary real-sim yahookr

c = 1

a9a ijcnn1 rcv1 train.binary yahoojp

covtype.scale news20.binary real-sim yahookr

c = 8, 192

Figure IX: A timing comparison between one-variable and two-variable CD with/without
shrinking for l1-loss SVM with C = 1 and 8, 192. The x-axis is running time in seconds.
Note that the shrinking implementation is stopping-tolerance dependent (see line 34 of
Algorithm III). Thus the curve is generated by several runs of using different tolerances. It
may not be strictly decreasing because of timing fluctuation.

22

a9a ijcnn1 news20.binary yahoojp

covtype.scale rcv1 train.binary real-sim yahookr

Figure X: Comparison of applying two-variable block CD to solve the SVM problem
with/without a bias term. We consider the l2 loss and set C = 1. The x-axis is the
running time in seconds. Shrinking is disabled.

a9a ijcnn1 news20.binary yahoojp

covtype.scale rcv1 train.binary real-sim yahookr

Figure XI: Comparison of applying two-variable block CD to solve the SVM problem
with/without a bias term. We consider the l1 loss and set C = 1. The x-axis is the
running time in seconds. Shrinking is disabled.

23

a9a ijcnn1 news20.binary yahoojp

covtype.scale rcv1 train.binary real-sim yahookr

Figure XII: Comparison of applying two-variable block CD to solve dual of SVM
with/without a linear constraint. All settings are the same as Figure 5, though for the
approach 2-CD-nobias we apply the trick in (2.2) to embed the bias term in the model and
still avoid a linear constraint in the dual.

a9a ijcnn1 news20.binary yahoojp

covtype.scale rcv1 train.binary real-sim yahookr

Figure XIII: Comparison of applying two-variable block CD to solve dual of SVM
with/without a linear constraint. All settings are the same as Figure 5 but we use cross-
validation to find their C parameters, and the y-axis is changed to the test accuracy

24

a9a ijcnn1 news20.binary yahoojp

covtype.scale rcv1 train.binary real-sim yahookr

Figure XIV: Comparison of applying two-variable block CD to solve dual of SVM
with/without a linear constraint. All settings are the same as Figure 5, though we use
cross-validation to find their C parameters, and for the approach 2-CD-nobias we apply the
trick in (2.2) to embed the bias term in the model and still avoid a linear constraint in the
dual. The y-axis is changed to the test accuracy.

25

VI. Proofs of Theorems in Section II

VI.I Proof of Theorem II.1

Proof Because d̄2 is an optimal solution of (vii), it satisfies the following optimality
condition

Q12d̄1 +Q22d̄2 + p2

{
≥ 0 if d̄2 < U2,

≤ 0 if d̄2 > L2.
(xxix)

This is already the optimality condition corresponding to d2, so our remaining task of
proving that (d̄1, d̄2) is optimal is to show that

Q11d̄1 +Q12d̄2 + p1

{
≥ 0 if d̄1 < U1,

≤ 0 if d̄1 > L1.
(xxx)

We prove

Q11d̄1 +Q12d̄2 + p1 ≤ 0

under the situation of

d∗1 ≥ U1 > L1, d̄1 = U1. (xxxi)

The proof of the other situation

d∗1 ≤ L1 < U1, d̄1 = L1

is the same. Note that if

U1 = L1,

then (xxx) directly holds because no d̄1 ∈ (L1, U1). Now we consider two cases.
Case 1: Q12 ≥ 0

From (xlv),

−(Q12d̄1 + p2)

Q22
− d∗2 =

−Q12d̄1 − p2 −Q22d
∗
2

Q22

=
−Q12(d̄1 − d∗1)

Q22
≥ 0, (xxxii)

where (xxxii) is from Q12 ≥ 0 and (xxxi). Thus in finding d̄2 in (vii) we intend to increase
d∗2 to d̄2.

We further consider two situations. First,

−(Q12d̄1 + p2)

Q22
≤ L2.

Then (xxxii) implies

d∗2 ≤
−(Q12d̄1 + p2)

Q22
≤ L2

26

and with (vii),

d̄2 = P [d∗2] = L2. (xxxiii)

By (xxxi), (xxxiii), and the assumption in (vi), we have the optimality condition

Q11d̄1 +Q12d̄2 + p1 = Q11P [d∗1] +Q12P [d∗2] + p1 ≤ 0. (xxxiv)

If on the other hand

−(Q12d̄1 + p2)

Q22
> L2, (xxxv)

then (vii) and (xxxv) imply

d̄2 = min(U2,
−(Q12d̄1 + p2)

Q22
) ≤ −(Q12d̄1 + p2)

Q22
. (xxxvi)

Therefore,

d̄2 − d∗2 ≤
−(Q12d̄1 + p2)

Q22
− d∗2

=
−Q12(d̄1 − d∗1)

Q22
, (xxxvii)

where (xxxvii) is from (xxxii). Then

Q11d̄1 +Q12d̄2 + p1 =Q11(d̄1 − d∗1) +Q12(d̄2 − d∗2) (xxxviii)

≤(d̄1 − d∗1)
Q11Q22 −Q2

12

Q22
(xxxix)

≤0, (xl)

where (xxxviii) is from (xlv), (xxxix) is from (xxxvii), and (xl) is from the positive semi-
definiteness of

[Q11 Q12

Q12 Q22

]
. This leads to the optimality condition in (xxx).

Case 2: Q12 < 0
By a similar derivation to (xxxii),

−(Q12d̄1 + p2)

Q22
− d∗2 =

−Q12(d̄1 − d∗1)

Q22
≤ 0. (xli)

Thus we intend to decrease d∗2 to d̄2.
We also consider two cases. First,

−(Q12d̄1 + p2)

Q22
≥ U2.

Then (xli) and (vii) imply

d̄2 = P [d∗2] = U2.

27

By (xxxi) and the assumption in (vi), we have the optimality condition in (xxxiv). If on
the other hand,

−(Q12d̄1 + p2)

Q22
< U2, (xlii)

then (vii) and (xlii) imply

d̄2 = max(L2,
−(Q12d̄1 + p2)

Q22
) ≥ −(Q12d̄1 + p2)

Q22
. (xliii)

Therefore,

d̄2 − d∗2 ≥
−(Q12d̄1 + P2)

Q22
− d∗2

=
−Q12(d̄1 − d∗1)

Q22
, (xliv)

where (xliv) is from (xli). With Q12 < 0, we obtain the same inequalities in (xxxviii)-(xl)
and the optimality condition in (xxx).

VI.II Proof of Theorem II.2

Proof Consider

d∗1 ≥ U1.

From (3.16), the optimal solution satisfies[
Q11 Q12

Q12 Q22

] [
d∗1
d∗2

]
+

[
p1

p2

]
=

[
0
0

]
(xlv)

and then

Q11U1 +Q12P [d∗2] + p1

= Q11d
∗
1 +Q12d

∗
2 + p1 +Q11(U1 − d∗1)

= Q11(U1 − d∗1) ≤ 0,

so the optimality condition is satisfied. The situation for

d∗1 ≤ L1

is similar.

28

VI.III Proof of Theorem II.3

Proof We consider

Li < Ui, i = 1, 2, (xlvi)

because if Li = Ui, the optimality condition directly holds.
We assume P [d∗1] = U1. The situations of P [d∗1] = L1 is similar because of the symmetry.

Assume the result is wrong. Then (P [d∗1], P [d∗2]) satisfies neither the optimality condition
of d1 nor that of d2. We further consider two cases P [d∗2] = L2 and U2.
Case 1: P [d∗2] = L2

Define ∆1 and ∆2 as

∆1 = P [d∗1]− d∗1 = U1 − d∗1 ≤ 0,

∆2 = P [d∗2]− d∗2 = L2 − d∗2 ≥ 0.
(xlvii)

Because optimality conditions are violated, with (xlvi),

Q11P [d∗1] +Q12P [d∗2] + p1 > 0,

Q12P [d∗1] +Q22P [d∗2] + p2 < 0.
(xlviii)

With (xlv) and (xlvii), (xlviii) becomes

Q11∆1 +Q12∆2 > 0,

Q12∆1 +Q22∆2 < 0.
(xlix)

We then have

∆1 6= 0 or ∆2 6= 0. (l)

Otherwise, (xlix) cannot hold. From (xlix) and (l),[
∆1 ∆2

] [Q11∆1 +Q12∆2

Q12∆1 +Q22∆2

]
=
[
∆1 ∆2

] [Q11 Q12

Q12 Q22

] [
∆1

∆2

]
< 0.

However, [
Q11 Q12

Q12 Q22

]
is positive semi-definite, so there is a contradiction.
case 2: P [d∗2] = U2

We have ∆1 ≤ 0, ∆2 ≤ 0. The violation of the result implies

Q11∆1 +Q12∆2 > 0,

Q12∆1 +Q22∆2 > 0.

With (l), [
∆1 ∆2

] [Q11∆1 +Q12∆2

Q12∆1 +Q22∆2

]
=
[
∆1 ∆2

] [Q11 Q12

Q12 Q22

] [
∆1

∆2

]
< 0,

a contradiction to the positive semi-definiteness of
[Q11 Q12
Q12 Q22

]
.

29

VII. Solving the Two-variable Sub-problem (3.17) Without the Proximal
Term

It is possible to consider a sub-problem without the proximal term, though the procedure
becomes more complicated. Here we show details.

VII.I The Situation of Qii = 0 or Qjj = 0

For l1-loss SVM, without the proximal term it is possible that Qii = 0 or Qjj = 0. Assume
Qii = 0. Then

Qii = ‖xi‖2 = 0

implies that xi = 0. From

∇if(α) =
l∑

j=1

yiyjx
T
i xjαj − 1

=− 1 ≤ 0, ∀α,

by the optimality condition, αi = Ci is optimal for the dual problem (2.3). We can identify
these zero instances before running the CD algorithm.

VII.II Hessian is Positive Semi-definite

For l2-loss SVM, from (2.4), Hessian is always positive definite. However, for l1-loss SVM,
Hessian may be only positive semi-definite and it is possible that

Q11Q22 −Q2
12 = 0. (li)

If Hessian is positive definite, then the solution procedure in Section II can be used. Here
we address the situation if (li) occurs. From Section VII.I, after removing zero instances in
the beginning, we have

Q11 > 0 and Q22 > 0,

and therefore (li) implies

Q12 6= 0. (lii)

When the Hessian is positive definite, in Section II we calculate d∗1 and d∗2, which play an
important role in Algorithm II. With (li), they are not well defined because a division by
zero occurs. However, we will show that an extension of (ii) to define d∗1 and d∗2 is possible.
We begin with checking the numerator of d∗1 and d∗2 in (ii). From

Q11(−Q22p1 +Q12p2) = −Q12(−Q11p2 +Q12p1),

the two numerators have the following relationship.

−Q22p1 +Q12p2 =
−Q12

Q11
(−Q11p2 +Q12p1). (liii)

30

Now assume that

−Q22p1 +Q12p2 6= 0. (liv)

We will discuss later how to handle the situation if this value is zero.
From (li), (liii), and (liv), we extend (ii) to define

d∗1 =

{
∞ if−Q22p1 +Q12p2 > 0,

−∞ if−Q22p1 +Q12p2 < 0,

d∗2 =

{
∞ if−Q11p2 +Q12p1 > 0,

−∞ if−Q11p2 +Q12p1 < 0.

(lv)

These values can be projected to lower or upper bounds if we make the following assumption.

Assumption VII.1 We have

−∞ < Li ≤ Ui <∞, i = 1, 2. (lvi)

For l1-loss SVM, whose Hessian may be only positive semi-definite, this assumption holds
because in (2.1) we choose C <∞.

We show in the following theorem that Theorem II.1 and Theorem II.3 can be extended
here, so the same Algorithm II can be used without modifications. Note that Theorem II.2
is no longer needed because from Assumption VII.1 and (lv), the condition d∗2 ∈ [L2, U2]
never holds.

Theorem VII.2 Under Assumption VII.1, if

Q11Q22 −Q2
12 = 0 (lvii)

and d∗1, d
∗
2 are defined as in (lv), then Theorems II.1 and II.3 hold.

Proof We begin with checking Theorem II.1. The same proof can almost be used. We
also prove only the situation

d∗1 ≥ U1, d̄1 = U1.

From the definition in (lv), this in fact means

d∗1 =∞, P [d∗1] = d̄1 = U1. (lviii)

Further, (lviii) and (lv) imply

−Q22p1 +Q12p2 > 0. (lix)

We now consider Q12 > 0, while the proof for Q12 < 0 is similar. Note that we have Q12 6= 0
from (lii).

The same as in Theorem II.1, we further consider two situations. First,

−(Q12d̄1 + p2)

Q22
≤ L2.

31

From (lix), Q12 > 0, (liii) and (lv), we have

d∗2 = −∞ ≤ −(Q12d̄1 + p2)

Q22
≤ L2. (lx)

Then (xxxiii) and (xxxiv) follow, so we have the needed optimality condition
If on the other hand,

−(Q12d̄1 + p2)

Q22
> L2,

then (xliii) holds. We now check the optimality condition of d1:

Q11d̄1 +Q12d̄2 + p1

≤Q11d̄1 +Q12
−(Q12d̄1 + p2)

Q22
+ p1 (lxi)

=
−Q12p1 +Q22p1

Q22
(lxii)

≤0, (lxiii)

where (lxi) is from Q12 ≥ 0 and (xliii), (lxii) is from (lvii), and (lxiii) is from (lix).
Next, to extend Theorem II.3 we follow the same setting to consider

d∗1 = +∞, P [d∗1] = U1 (lxiv)

and check the two cases P [d∗2] = L2 or U2.
Case 1: P [d∗2] = L2

For this case

d∗2 = −∞ and P [d∗2] = L2.

From (liii) and (lv),

Q12 > 0. (lxv)

If the result in Theorem II.3 is wrong, both optimality conditions are violated and

Q11U1 +Q12L2 + p1 > 0,

Q12U1 +Q22L2 + p2 < 0.

With (li) and (lxv),

Q22(Q11U1 +Q12L2 + p1)

>0

>Q12(Q12U1 +Q22L2 + p2)

(lxvi)

leads to

−Q22p1 +Q12p2 < 0. (lxvii)

32

From (lv), we obtain a contradiction to d∗1 =∞ in (lxiv).
Case 2: P [d∗2] = U2

For this case

d∗2 =∞ and P [d∗2] = U2.

From (liii) and (lv),

Q12 < 0. (lxviii)

The same with the last case, we assume the optimality conditions are violated and therefore

Q11U1 +Q12L2 + p1 > 0,

Q12U1 +Q22L2 + p2 > 0.

With (lxviii), we can have (lxvi) and (lxvii). Then (lxvii) contradicts the assumption.

We now show that the same procedure in Algorithm II can be used. From (lv) and
Assumption VII.1,

d∗1 /∈ [L1, U1] and d∗2 /∈ [L2, U2]. (lxix)

Then P [d∗1] and P [d∗2] are bounded. We check if (P [d∗1], P [d∗2]) satisfies the optimality
condition of d1. If it does, then from Theorem VII.2, we can apply Theorem II.1 to use (vii)
for obtaining a solution. Otherwise, from Theorem VII.2 and (lxix), we apply Theorem II.3
to have that (P [d∗1], P [d∗2]) satisfies the optimality condition of d2. Then we apply Theorem
II.1 to obtain an optimal solution as in (x). Therefore, the solution procedure is exactly
the same as the procedure in Algorithm II for positive-definite Hessian.

Next we discuss the rare situation where both

Q11Q22 −Q2
12 = 0 (lxx)

and

−Q22p1 +Q12p2 = 0. (lxxi)

The objective function can be written as

1

2
Q11d

2
1 +Q12d1d2 +

1

2
Q22d

2
2 + p1d1 + p2d2

=
1

2Q11
(Q11d1 +Q12d2 + p1)2 + constant, (lxxii)

where for the linear term of d2, we use (lxx)-(lxxi) and (lii) to have

Q12p1d2

Q11
=
Q2

12p2d2

Q11Q22
= p2d2. (lxxiii)

33

From (lxxii), the optimization problem becomes to find a point in the feasible region

L1 ≤ d1 ≤ U1, L2 ≤ d2 ≤ U2, (lxxiv)

that is the closest to the plane

Q11d1 +Q12d2 + p1 = 0. (lxxv)

We then give the details in Section VII.III to design Algorithm IV for finding an optimal
solution.

VII.III Solution Procedure when (lxx) and (lxxi) Both Happen

It is easy to identify an optimal solution by checking the geometric relationship between
the feasible region and the straight line in (lxxv). If Q12 < 0, then the line has a positive
slope. Thus we have the following four possible situations.

(U1, L2)(L1, L2)

(U1, U2)(L1, U2)

If

Q11U1 +Q12L2 + p1 ≤ 0, (lxxvi)

then the whole feasible region is on the left side of the line and (U1, L2) is the closest point.
If (lxxvi) dose not hold and

Q11L1 +Q12L2 + p1 ≤ 0,

then from the figure, a line segment is the interaction between the line and the region. Any
point on this line segment is an optimal solution. We can simply consider the interaction
point on the horizontal line d2 = L2:

d̄1 =
−Q12L2 − p1

Q11
, d̄2 = L2. (lxxvii)

Other situations are similar. A summary of the procedure is in Algorithm IV. For practical
implementations we switch from d1, d2 back to αi, αj by

U1 ≡ Ci − αi, L1 ≡ −αi and p1 = ∇if(α).

Note that the plane (lxxv) becomes

Qiiᾱi +Qijᾱj = δ ≡ Qiiαi +Qijαj − pi, (lxxviii)

where (ᾱi, ᾱj) and (αi, αj) are the variable and the current iterate, respectively.

34

References

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM TIST,
2(3):27:1–27:27, 2011.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLIN-
EAR: a library for large linear classification. Journal of Machine Learning Research, 9:
1871–1874, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In ICML, 2008a.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sun-
dararajan. A dual coordinate descent method for large-scale linear SVM. In Proceedings
of the Twenty Fifth International Conference on Machine Learning (ICML), 2008b. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.

Thorsten Joachims. Making large-scale SVM learning practical. In Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

Ingo Steinwart, Don Hush, and Clint Scovel. Training SVMs without offset. JMLR, 12:
141–202, 2011.

Po-Wei Wang and Chih-Jen Lin. Iteration complexity of feasible descent methods for convex
optimization. JMLR, 2014.

35

