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1 Definition

In regression problems, we are given a sample S = {(x1, 1), (X2, ¥2), - - ., (X, ¥;) } in which
x; denotes the ith observation and y; is the corresponding target value. The relationship
between x; and y; is formulated as

yi = f(xi) + e(x5),

that is, a function f maps the input vector x; to the true target, which, being corrupted
by noise €(x;), is measured as y;. Gaussian Process Regression (GPR) is a non-parametric
model that assumes

f= [f(xl)vf(x2>7”‘7f(xl>]TNN(OvK)v (1)

where K is the covariance matrix whose (i,j)th element is given by a kernel function
K(x;,%;), and

(y‘f) = ([yby%"'ayl]T‘f) NN(faO—QI)a (2)
which means the noise follows a zero-mean and independent joint Gaussian distribution.
Note that (2) also implies y’s conditional independence of {x;,xs,...,x;} given f. For

a new instance x*, the goal is to estimate P(f(x*)|x*, S). In the sequel we assume K to
be invertible.

2 Derivation of The Predictive Distribution

For convenience, we denote f(x*) as f*. Following a standard Bayesian approach, we
write

P(FS) = [ PUP xSt
- /p(f*|f,x*,S)P(f|x*,S)df. (3)

We then derive P(f*|f,x*,S) in Section 2.1, P(f|x*,S) in Section 2.2, and finally P(f*|x*,5)
in Section 2.3.
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2.1 Derivation of P(f*|f,x*, 9)
Define k = [K(x*,x;), K(x*,%2), ..., K(x*,x;)]T. Then the joint distribution of [f f*]7 is

0l ko)) g

Since conditions on x* and S are embedded in the covariance matrix in (4), P(f*|f,x*, 5)
is equivalent to
P, 1)

Pl = g (5)

Let —1
A bl _|K k
|ibT C:| = |:kT ’C(X*,X*)} ) (6)
then according to (5)
T
e = e =3[ 2] (1]
= exp ( — %(c( 2+ 2b5f) f* + fTAf> + %fTK‘lf)
1

From (6), we have
Kb+ ck =0 and k'b + cL(x*,x*) = 1,

which in turn implies

K-k

b= K SR K (®)
1

c = (9)

K(x*, x*) — kTK-1k’

Plugging (8) and (9) into (7) yields

: (/" — K"K ')
PUIE) oc exp ( T 2(K(x", x) — KTK 1K) )
that is,
(f*[£) ~ N(kTK—lf,IC(x*,x*) - kTK—lk). (10)



2.2 Derivation of P(f|x*

=)

Since f does not depend on x*, it suffices to derive P(f|S). Again, we use standard
Bayesian techniques to have

P(f]S) o P(S|F)P(f)
= Py x|f)P(f)
P(ylx, £)P(x|f) P(f) (11)
o P(y[f)P(f). (12)

From (11) to (12), we use the fact that P(y|x,f) = P(y|f) and P(x|f) = P(x), which is
assumed to have a uniform distribution. According to (1), (2) and (12),

- Hy-f) fTK*f)

P(f]S) o exp 52 5

f7 (K + o 2)f - 202ny>
xX exp| —

2
— L(f —
[ EWE u)>,
2
where
Y = (K '+o2)”"

= (K 4o ?KK™Y) "

= ((+o2K)K) B

= ’K(K +o%1)”"
and

u=o0"2%y = K(K +0%I)y.

Therefore,

(£8) ~ N(K(K +0*1) "y, K (K +0°1) ). (13)

2.3 Derivation of P(f*|x*,5)

For the ease of presentation, we define

= Kk,

K(x*,x*) — k" K 'k,
K(K +dI) 'y,
?K(K +a°1)!

Mo Dy
I



Then according to (3), (10) and (13),
P(fx",5)

N /exp _(f*—an)Q_(f—b)TZ—l(f—b)>df

2A 2

x0T T
(f—b) S (f—b) — 2f§ f+fTaZ f))df

T *
(7 4+ ) —2(2 b+ an)Tf>> df

o) (o) (F )

T —1 7\~1
x exp(—%(l a <AE —|—aa) a(f*)2—2aT(AZ1+aaT)_lElbf*)).

Therefore,

where

. Aal(AYT+ aaT)flEflbf*
- 1—al (AT 1+ aaT)fla ’
AN

1—al(AX-1 + aaT)_la‘

(O_*)Q —

Using the Sherman-Morrison- Woodbury formula:

(A+UVT) ' = A — A U1+ VTA D) VA,

we have
_ DIREDY TYay-1 . %
(AX™! +aa”) - ™ Za(l + aAa> alTZ
1 ( Yaal'y )
A A+ ala/’
Consequently,
_al (E - ffﬁga)?lbf* ] — _a’sa

T AtaTxa T %
—a bf

M - T alYa (aTEa)
1— za’ (z - ffZ‘Tga)a 1 =21 s

—a’bf* =Kk (K + 021)1)’,



and

A
(0-*)2 = TZ
a a (aTEa)2
1 - A+ A(A+aTxa)
= A+a'Ya
= A+0%k"(0°K + KK) 'k (15)
= A+0°k" (0_2K_1 —o (Ko + ])_1>k (16)

= A+KTK 'k —K'(K +0°1) 'k
= K(x',x") - k'(K +0%) 'k

From (15) to (16), we use (14) with A = ¢?K and U = V = K. Finally, we are able to
give the predictive distribution:

(P, 8) ~ N (K7 (K 4+ 0% 1) Ty K x7) = KT (K + 021) k).



