A Technical Introduction to Gaussian Process Regression

Tzu-Kuo Huang¹

1 Definition

In regression problems, we are given a sample $S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_l, y_l)\}$ in which \mathbf{x}_i denotes the *i*th observation and y_i is the corresponding target value. The relationship between \mathbf{x}_i and y_i is formulated as

$$y_i = f(\mathbf{x}_i) + \epsilon(\mathbf{x}_i),$$

that is, a function f maps the input vector \mathbf{x}_i to the true target, which, being corrupted by noise $\epsilon(\mathbf{x}_i)$, is measured as y_i . Gaussian Process Regression (GPR) is a non-parametric model that assumes

$$\mathbf{f} \equiv [f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_l)]^T \sim N(\mathbf{0}, K), \tag{1}$$

where K is the covariance matrix whose (i, j)th element is given by a kernel function $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j)$, and

$$(\mathbf{y}|\mathbf{f}) = ([y_1, y_2, \dots, y_l]^T |\mathbf{f}) \sim N(\mathbf{f}, \sigma^2 I), \tag{2}$$

which means the noise follows a zero-mean and independent joint Gaussian distribution. Note that (2) also implies \mathbf{y} 's conditional independence of $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_l\}$ given \mathbf{f} . For a new instance \mathbf{x}^* , the goal is to estimate $P(f(\mathbf{x}^*)|\mathbf{x}^*, S)$. In the sequel we assume K to be invertible.

2 Derivation of The Predictive Distribution

For convenience, we denote $f(\mathbf{x}^*)$ as f^* . Following a standard Bayesian approach, we write

$$P(f^*|\mathbf{x}^*, S) = \int P(f^*, \mathbf{f}|\mathbf{x}^*, S) d\mathbf{f}$$
$$= \int P(f^*|\mathbf{f}, \mathbf{x}^*, S) P(\mathbf{f}|\mathbf{x}^*, S) d\mathbf{f}. \tag{3}$$

We then derive $P(f^*|\mathbf{f}, \mathbf{x}^*, S)$ in Section 2.1, $P(\mathbf{f}|\mathbf{x}^*, S)$ in Section 2.2, and finally $P(f^*|\mathbf{x}^*, S)$ in Section 2.3.

¹Department of Computer Science, National Taiwan University, Taipei 106, Taiwan.

2.1 Derivation of $P(f^*|\mathbf{f}, \mathbf{x}^*, S)$

Define $\mathbf{k} \equiv [\mathcal{K}(\mathbf{x}^*, \mathbf{x}_1), \mathcal{K}(\mathbf{x}^*, \mathbf{x}_2), \dots, \mathcal{K}(\mathbf{x}^*, \mathbf{x}_l)]^T$. Then the joint distribution of $[\mathbf{f} \ f^*]^T$ is

$$\begin{bmatrix} \mathbf{f} \\ f^* \end{bmatrix} \sim N \left(\mathbf{0}, \begin{bmatrix} K & \mathbf{k} \\ \mathbf{k}^T & \mathcal{K}(\mathbf{x}^*, \mathbf{x}^*) \end{bmatrix} \right). \tag{4}$$

Since conditions on \mathbf{x}^* and S are embedded in the covariance matrix in (4), $P(f^*|\mathbf{f}, \mathbf{x}^*, S)$ is equivalent to

$$P(f^*|\mathbf{f}) = \frac{P(f^*, \mathbf{f})}{P(\mathbf{f})}.$$
 (5)

Let

$$\begin{bmatrix} A & \mathbf{b} \\ \mathbf{b}^T & c \end{bmatrix} \equiv \begin{bmatrix} K & \mathbf{k} \\ \mathbf{k}^T & \mathcal{K}(\mathbf{x}^*, \mathbf{x}^*) \end{bmatrix}^{-1}, \tag{6}$$

then according to (5)

$$P(f^*|\mathbf{f}) \propto \exp\left(-\frac{1}{2}\begin{bmatrix}\mathbf{f}\\f^*\end{bmatrix}^T\begin{bmatrix}A&\mathbf{b}\\\mathbf{b}^T&c\end{bmatrix}\begin{bmatrix}\mathbf{f}\\f^*\end{bmatrix} + \frac{1}{2}\mathbf{f}^TK^{-1}\mathbf{f}\right)$$

$$= \exp\left(-\frac{1}{2}\left(c(f^*)^2 + 2(\mathbf{b}^T\mathbf{f})f^* + \mathbf{f}^TA\mathbf{f}\right) + \frac{1}{2}\mathbf{f}^TK^{-1}\mathbf{f}\right)$$

$$\propto \exp\left(-\frac{1}{2c^{-1}}\left(f^* + \frac{\mathbf{b}^T\mathbf{f}}{c}\right)^2\right). \tag{7}$$

From (6), we have

$$K\mathbf{b} + c\mathbf{k} = \mathbf{0}$$
 and $\mathbf{k}^T\mathbf{b} + c\mathcal{K}(\mathbf{x}^*, \mathbf{x}^*) = 1$

which in turn implies

$$\mathbf{b} = -\frac{K^{-1}\mathbf{k}}{\mathcal{K}(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}^T K^{-1}\mathbf{k}},\tag{8}$$

$$c = \frac{1}{\mathcal{K}(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}^T K^{-1} \mathbf{k}}.$$
 (9)

Plugging (8) and (9) into (7) yields

$$P(f^*|\mathbf{f}) \propto \exp\bigg(-\frac{(f^* - \mathbf{k}^T K^{-1}\mathbf{f})^2}{2(\mathcal{K}(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}^T K^{-1}\mathbf{k})}\bigg),$$

that is,

$$(f^*|\mathbf{f}) \sim N(\mathbf{k}^T K^{-1}\mathbf{f}, \mathcal{K}(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}^T K^{-1}\mathbf{k}).$$
 (10)

2.2 Derivation of $P(\mathbf{f}|\mathbf{x}^*, S)$

Since \mathbf{f} does not depend on \mathbf{x}^* , it suffices to derive $P(\mathbf{f}|S)$. Again, we use standard Bayesian techniques to have

$$P(\mathbf{f}|S) \propto P(S|\mathbf{f})P(\mathbf{f})$$

$$= P(\mathbf{y}, \mathbf{x}|\mathbf{f})P(\mathbf{f})$$

$$= P(\mathbf{y}|\mathbf{x}, \mathbf{f})P(\mathbf{x}|\mathbf{f})P(\mathbf{f})$$

$$\propto P(\mathbf{y}|\mathbf{f})P(\mathbf{f}).$$
(11)

From (11) to (12), we use the fact that $P(\mathbf{y}|\mathbf{x}, \mathbf{f}) = P(\mathbf{y}|\mathbf{f})$ and $P(\mathbf{x}|\mathbf{f}) = P(\mathbf{x})$, which is assumed to have a uniform distribution. According to (1), (2) and (12),

$$P(\mathbf{f}|S) \propto \exp\left(-\frac{(\mathbf{y} - \mathbf{f})^{T}(\mathbf{y} - \mathbf{f})}{2\sigma^{2}} - \frac{\mathbf{f}^{T}K^{-1}\mathbf{f}}{2}\right)$$

$$\propto \exp\left(-\frac{\mathbf{f}^{T}(K^{-1} + \sigma^{-2}I)\mathbf{f} - 2\sigma^{-2}\mathbf{y}^{T}\mathbf{f}}{2}\right)$$

$$\propto \exp\left(-\frac{(\mathbf{f} - \mathbf{u})\Sigma^{-1}(\mathbf{f} - \mathbf{u})}{2}\right),$$

where

$$\Sigma = (K^{-1} + \sigma^{-2}I)^{-1}$$

$$= (K^{-1} + \sigma^{-2}KK^{-1})^{-1}$$

$$= ((I + \sigma^{-2}K)K^{-1})^{-1}$$

$$= \sigma^{2}K(K + \sigma^{2}I)^{-1}$$

and

$$\mathbf{u} = \sigma^{-2} \Sigma \mathbf{y} = K (K + \sigma^2 I)^{-1} \mathbf{y}.$$

Therefore,

$$(\mathbf{f}|S) \sim N\left(K\left(K + \sigma^2 I\right)^{-1} \mathbf{y}, \sigma^2 K\left(K + \sigma^2 I\right)^{-1}\right). \tag{13}$$

2.3 Derivation of $P(f^*|\mathbf{x}^*, S)$

For the ease of presentation, we define

$$\mathbf{a} \equiv K^{-1}\mathbf{k},$$

$$\Delta \equiv \mathcal{K}(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}^T K^{-1}\mathbf{k},$$

$$\mathbf{b} \equiv K(K + \sigma^2 I)^{-1}\mathbf{y},$$

$$\Sigma \equiv \sigma^2 K(K + \sigma^2 I)^{-1}.$$

Then according to (3), (10) and (13),

$$P(f^*|\mathbf{x}^*, S)$$

$$\propto \int \exp\left(-\frac{(f^* - \mathbf{a}^T \mathbf{f})^2}{2\Delta} - \frac{(\mathbf{f} - \mathbf{b})^T \Sigma^{-1} (\mathbf{f} - \mathbf{b})}{2}\right) d\mathbf{f}$$

$$= \int \exp\left(-\frac{(f^*)^2}{2\Delta} - \frac{1}{2} \left((\mathbf{f} - \mathbf{b})^T \Sigma^{-1} (\mathbf{f} - \mathbf{b}) - \frac{2f^* \mathbf{a}^T \mathbf{f}}{\Delta} + \mathbf{f}^T \frac{\mathbf{a} \mathbf{a}^T}{\Delta} \mathbf{f}\right)\right) d\mathbf{f}$$

$$\propto \int \exp\left(-\frac{(f^*)^2}{2\Delta} - \frac{1}{2} \left(\mathbf{f}^T (\Sigma^{-1} + \frac{\mathbf{a} \mathbf{a}^T}{\Delta}) \mathbf{f} - 2(\Sigma^{-1} \mathbf{b} + \frac{f^* \mathbf{a}}{\Delta})^T \mathbf{f}\right)\right) d\mathbf{f}$$

$$\propto \exp\left(-\frac{(f^*)^2}{2\Delta} + \frac{1}{2} \left(\frac{f^* \mathbf{a}}{\Delta} + \Sigma^{-1} \mathbf{b}\right)^T \left(\Sigma^{-1} + \frac{\mathbf{a} \mathbf{a}^T}{\Delta}\right)^{-1} \left(\frac{f^* \mathbf{a}}{\Delta} + \Sigma^{-1} \mathbf{b}\right)\right)$$

$$\propto \exp\left(-\frac{1}{2} \left(\frac{1 - \mathbf{a}^T (\Delta \Sigma^{-1} + \mathbf{a} \mathbf{a}^T)^{-1} \mathbf{a}}{\Delta} (f^*)^2 - 2\mathbf{a}^T (\Delta \Sigma^{-1} + \mathbf{a} \mathbf{a}^T)^{-1} \Sigma^{-1} \mathbf{b} f^*\right)\right).$$

Therefore,

$$(f^*|\mathbf{x}^*, S) \sim N(\mu^*, (\sigma^*)^2)$$

where

$$\mu^* = \frac{\triangle \mathbf{a}^T (\triangle \Sigma^{-1} + \mathbf{a} \mathbf{a}^T)^{-1} \Sigma^{-1} \mathbf{b} f^*}{1 - \mathbf{a}^T (\triangle \Sigma^{-1} + \mathbf{a} \mathbf{a}^T)^{-1} \mathbf{a}},$$
$$(\sigma^*)^2 = \frac{\triangle}{1 - \mathbf{a}^T (\triangle \Sigma^{-1} + \mathbf{a} \mathbf{a}^T)^{-1} \mathbf{a}}.$$

Using the Sherman-Morrison-Woodbury formula:

$$(A + UV^{T})^{-1} = A^{-1} - A^{-1}U(I + V^{T}A^{-1}U)^{-1}V^{T}A^{-1},$$
(14)

we have

$$(\Delta \Sigma^{-1} + \mathbf{a}\mathbf{a}^{T})^{-1} = \frac{\Sigma}{\Delta} - \frac{\Sigma}{\Delta} \mathbf{a} \left(1 + \frac{\mathbf{a}^{T} \Sigma \mathbf{a}}{\Delta}\right)^{-1} \mathbf{a}^{T} \frac{\Sigma}{\Delta}$$
$$= \frac{1}{\Delta} \left(\Sigma - \frac{\Sigma \mathbf{a}\mathbf{a}^{T} \Sigma}{\Delta + \mathbf{a}^{T} \Sigma \mathbf{a}}\right).$$

Consequently,

$$\mu^* = \frac{\mathbf{a}^T \left(\Sigma - \frac{\Sigma \mathbf{a} \mathbf{a}^T \Sigma}{\triangle + \mathbf{a}^T \Sigma \mathbf{a}} \right) \Sigma^{-1} \mathbf{b} f^*}{1 - \frac{1}{\triangle} \mathbf{a}^T \left(\Sigma - \frac{\Sigma \mathbf{a} \mathbf{a}^T \Sigma}{\triangle + \mathbf{a}^T \Sigma \mathbf{a}} \right) \mathbf{a}} = \frac{1 - \frac{\mathbf{a}^T \Sigma \mathbf{a}}{\triangle + \mathbf{a}^T \Sigma \mathbf{a}}}{1 - \frac{\mathbf{a}^T \Sigma \mathbf{a}}{\triangle} + \frac{(\mathbf{a}^T \Sigma \mathbf{a})^2}{\triangle(\triangle + \mathbf{a}^T \Sigma \mathbf{a})}} \mathbf{a}^T \mathbf{b} f^*$$
$$= \mathbf{a}^T \mathbf{b} f^* = \mathbf{k}^T \left(K + \sigma^2 I \right)^{-1} \mathbf{y},$$

and

$$(\sigma^{*})^{2} = \frac{\triangle}{1 - \frac{\mathbf{a}^{T} \Sigma \mathbf{a}}{\triangle} + \frac{(\mathbf{a}^{T} \Sigma \mathbf{a})^{2}}{\triangle(\triangle + \mathbf{a}^{T} \Sigma \mathbf{a})}}$$

$$= \triangle + \mathbf{a}^{T} \Sigma \mathbf{a}$$

$$= \triangle + \sigma^{2} \mathbf{k}^{T} (\sigma^{2} K + K K)^{-1} \mathbf{k}$$

$$= \triangle + \sigma^{2} \mathbf{k}^{T} (\sigma^{-2} K^{-1} - \sigma^{-4} (K \sigma^{-2} + I)^{-1}) \mathbf{k}$$

$$= \triangle + \mathbf{k}^{T} K^{-1} \mathbf{k} - \mathbf{k}^{T} (K + \sigma^{2} I)^{-1} \mathbf{k}$$

$$= \mathcal{K}(\mathbf{x}^{*}, \mathbf{x}^{*}) - \mathbf{k}^{T} (K + \sigma^{2} I)^{-1} \mathbf{k}.$$

$$(15)$$

From (15) to (16), we use (14) with $A = \sigma^2 K$ and U = V = K. Finally, we are able to give the predictive distribution:

$$(f^*|\mathbf{x}^*, S) \sim N(\mathbf{k}^T(K + \sigma^2 I)^{-1}\mathbf{y}, \mathcal{K}(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}^T(K + \sigma^2 I)^{-1}\mathbf{k}).$$