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ABSTRACT
In linear classification, a regularization term effectively reme-
dies the overfitting problem, but selecting a good regulariza-
tion parameter is usually time consuming. We consider cross
validation for the selection process, so several optimization
problems under different parameters must be solved. Our
aim is to devise effective warm-start strategies to efficiently
solve this sequence of optimization problems. We detailedly
investigate the relationship between optimal solutions of lo-
gistic regression/linear SVM and regularization parameters.
Based on the analysis, we develop an efficient tool to auto-
matically find a suitable parameter for users with no related
background knowledge.
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1. INTRODUCTION
Linear classifiers such as logistic regression and linear SVM

are commonly used in machine learning and data mining.
Because directly minimizing the training loss may overfit
the training data, the concept of regularization is usually ap-
plied. A linear classifier thus solves an optimization problem
that involves a parameter (often referred to as C) to balance
the training loss and the regularization term. Selecting the
regularization parameter is an important but difficult prac-
tical issue. An inappropriate setting may not only cause
overfitting or underfitting, but also a lengthy training time.

Several reasons make parameter selection a time-consuming
procedure. First, usually the search involves sweeping the
following sequence of parameters

Cmin,∆Cmin,∆
2Cmin, . . . , Cmax, (1)

where ∆ is a given factor. At each parameter the perfor-
mance must be estimated by, for example, cross validation
(CV). Thus a sequence of training tasks are conducted, and
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we may need to solve many optimization problems. Sec-
ondly, if we do not know the reasonable range of the pa-
rameters, we may need a long time to solve optimization
problems under extreme parameter values.

In this paper, we consider using warm start to efficiently
solve a sequence of optimization problems with different reg-
ularization parameters. Warm start is a technique to reduce
the running time of iterative methods by using the solution
of a slightly different optimization problem as an initial point
for the current problem. If the initial point is close to the op-
timum, warm start is very useful. Recently, for incremental
and decremental learning, where a few data instances are
added or removed, we have successfully applied the warm
start technique for fast training [20]. Now for parameter
selection, in contrast to the change of data, the optimiza-
tion problem is slightly modified because of the parameter
change. Many considerations become different from those in
[20]. As we will show in this paper, the relationship between
the optimization problem and the regularization parameter
must be fully understood.

Many past works have applied the warm-start technique
for solving optimization problems in machine learning meth-
ods. For kernel SVM, [5, 15] have considered various initial
points from the solution information of the previous prob-
lem. While they showed effective time reduction for some
data sets, warm start for kernel SVM has not been widely
deployed because of the following reasons.
- An initial point obtained using information from a related

optimization problem may not cause fewer iterations than
a naive initial point (zero in the case of kernel SVM).

- When kernels are used, SVM involves both regularization
and kernel parameters. The implementation of a warm-
start technique can be complicated. For example, we of-
ten cache frequently used kernel elements to avoid their
repeated computation, but with the change of kernel pa-
rameters, maintaining the kernel cache is very difficult.

In fact, [15] was our previous attempt to develop warm-
start techniques for kernel SVM, but results are not mature
enough to be included in our popular SVM software LIBSVM
[2]. In contrast, the situation for linear classification is sim-
pler because
- the regularization parameter is the only parameter to be

chosen, and
- as pointed out in [20] and other works, it is more flexible to

choose optimization methods for linear rather than kernel.
We will show that for different optimization methods, the
effectiveness of warm-start techniques varies.



In this work we focus on linear classification and make warm
start an efficient tool for the parameter selection.

Besides warm-start techniques, other methods have been
proposed for the parameter selection of kernel methods. For
example, Hastie et al. [9] show that for L1-loss SVM, solu-
tions are a piece-wise linear function of regularization pa-
rameters. They obtain the regularization path by updat-
ing solutions according to the optimality condition. This
approach basically needs to maintain and manipulate the
kernel matrix, a situation not applicable for large data sets.
Although this difficulty may be alleviated for linear classifi-
cation, we still see two potential problems. First, the proce-
dure to obtain the path depends on optimization problems
(e.g., primal and dual) and loss functions. Second, although
an approximate solution path can be considered [8], the reg-
ularization path may still contain too many pieces of linear
functions for large data sets. Therefore, in the current study,
we do not pursue this direction for the parameter selection
of linear classification. Another approach for parameter se-
lection is to minimize a function of parameters that approx-
imates the error (e.g., [18, 3, 4]). However, minimizing the
estimation may not lead to the the best parameters, and
the implementation of a two-level optimization procedure
is complicated. Because linear classifiers involves a single
parameter C, simpler approaches might be appropriate.

While traditional linear classification considers L2 regu-
larization (see formulations in Section 1.1), recently L1 reg-
ularization has been popular because of its sparse model.
Warm start may be very useful for training L1-regularized
problems because some variables may remain to be zero after
the change of parameters. In [13, 7], warm start is applied to
speed up two optimization methods: interior point method
and GLMNET, respectively. However, these works consider
warm start as a trick without giving a full study on parame-
ter selection. They investigate neither the range of parame-
ters nor the relation between optimization problems and pa-
rameters. Another work [19] proposes a screening approach
that pre-identifies some zero elements in the final solution.
Then a smaller optimization problem is solved. They ap-
ply warm-start techniques to keep track of nonzero elements
of the solutions under different parameters. However, the
screening approach is not applicable to L2-regularized clas-
sifiers because of the lack of sparsity. While warm start for
L1-regularized problems is definitely worth investigating, to
be more focused we leave this topic for future studies and
consider only L2-regularized classification in this work.

To achieve automatic parameter selection, we must iden-
tify a possible range of parameter values and decide when to
stop the selection procedure. None of the work mentioned
above except [19] has discussed the range of the regularized
parameter. The work [21] finds a lower bound of C values for
kernel SVM by solving a linear program, but for linear SVM,
the cost may be too high. Another study [14] proposes using
discrete optimization for the automatic parameter selection
of any classification method. Their procedure stops if better
parameters cannot be found after a few trials. By targeting
at L2-regularized linear classification, we will derive useful
properties to detect the possible parameter range.

In this work we develop a complete and automatic param-
eter selection procedure for L2-regularized linear classifiers
with the following two major contributions. First, by care-
fully studying the relationship between optimization prob-
lems and regularization parameters, we obtain and justify an

effective warm-start setting for fast cross validation across
a sequence of regularization parameters. Second, we pro-
vide an automatic parameter selection tool for users with
no background knowledge. In particular, users do not need
to specify a sequence of parameter candidates.

This paper is organized as follows. In the rest of this sec-
tion, we introduce the primal and dual formulations of linear
classifiers. In Section 2, we discuss the relation between op-
timization problems and regularization parameters. Based
on the results, we propose an effective warm-start setting to
reduce the training time in Section 3. To verify our anal-
ysis, Section 4 provides detailed experiments. The conclu-
sions are in Section 5. This research work has lead to a
useful parameter-selection tool1 extended from the popular
package LIBLINEAR [6] for linear classification. Because of
space limitation, we give proofs and more experiments in
supplementary materials.1

1.1 Primal and Dual Formulations
Although linear classification such as logistic regression

(LR) and linear SVM have been well studied in literatures
(e.g., a survey in [22]), for easy discussion we briefly list their
primal and dual formulations by mainly following the de-
scription in [20, Section 2]. Consider (label, feature-vector)
pairs of training data (yi,xi) ∈ {−1, 1} × Rn, i = 1, . . . , l.
A linear classifier obtains its model by solving the following
optimization problem.

min
w

f(w) ≡ 1

2
‖w‖2 + CL(w), (2)

where

L(w) ≡
∑l

i=1
ξ(w;xi, yi),

is the sum of training losses, ξ(w;x, y) is the loss function,
and C is a user-specified regularization parameter to balance
the regularization term ‖w‖2/2 and the loss term L(w). LR
and linear SVM consider the following loss functions.

ξ(w;x, y) ≡


log(1 + e−ywTx) logistic (LR) loss,

max(0, 1− ywTx) L1 loss,

max(0, 1− ywTx)2 L2 loss.

(3)

As indicated in [20], these loss functions have different dif-
ferentiability, so applicable optimization methods may vary.

Instead of solving problem (2) of variable w, it is well
known that the optimal w can be represented as a linear
combination of training data with coefficient α ∈ Rl.

w =
∑l

i=1
yiαixi. (4)

Then one can solve an optimization problem over α. An
example is the following dual problem of (2).

max
α

fD(α) ≡
∑l

i=1
h(αi, C)− 1

2
αT Q̄α

subject to 0 ≤ αi ≤ U,∀i = 1, . . . , l, (5)

where Q̄ = Q + D ∈ Rl×l, Qij = yiyjx
T
i xj , D is diagonal

with Dii = d,∀i, and

U =

{
C

∞
d =

{
0 for L1-loss SVM and LR,
1

2C
for L2-loss SVM.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
warm-start/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/warm-start/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/warm-start/


Following [20], we have h(αi, C) ={
αi for L1-loss and L2-loss SVM,

C logC − αi logαi − (C − αi) log(C − αi) for LR.

We refer to (2) as the primal problem.
We define some notations for later use.

Y ≡

y1

. . .

yl

 and X ≡

x
T
1

...
xT

l

 ∈ Rl×n. (6)

Further, e ≡ [1, 1, . . . , 1]T ∈ Rl and 0 ≡ [0, 0, . . . , 0]T .

2. OPTIMIZATION PROBLEMS AND REG-
ULARIZATION PARAMETERS

This section studies the relationship between the optimal
solution and the regularization parameter C. We focus on
the case of large C because the optimization problems be-
come more difficult.2 We separately discuss primal and dual
solutions in Sections 2.1 and 2.2, respectively. All proofs are
in the supplementary materials.

2.1 Primal Solutions
Because f(w) is strongly convex in w, an optimal solution

of (2) exists and is unique [1, Lemma 2.33]. We define wC

as the unique solution under parameter C, and W∞ as the
set of points that attain the minimum of L(w).

W∞ ≡ {w | L(w) = infw′ L(w′)}.

We are interested in the asymptotic behavior of the solution
wC when C →∞. The following theorem shows that {wC}
converges to a point in W∞.

Theorem 1 Consider any nonnegative and convex loss func-
tion ξ(w;x, y). If W∞ 6= φ, then

lim
C→∞

wC = w∞, where w∞ = arg min
w∈W∞

‖w‖2. (7)

Next we check if Theorem 1 is applicable to the three loss
functions in (3). It is sufficient to prove that W∞ 6= φ.

2.1.1 L1-loss and L2-loss SVM
For L1 loss, the asymptotic behavior of {wC} was studied

in [12]. Theorem 3 of [12] proves that there exist C∗ and
w∗ such that wC = w∗, ∀C ≥ C∗. Later in Theorem 6, we
prove the same result by Theorem 1 and properties in [11].
To see if W∞ 6= φ needed by Theorem 1 holds, we have that
infw L(w) can be written as the following linear program.

min
w,ξ

∑l

i=1
ξi

subject to ξi ≥ 1− yiwTxi, ξi ≥ 0, ∀i.

It has a feasible solution (w, ξ) = (0, e), and the objective
value is non-negative, so from [17, Theorem 4.2.3 (i)], a min-
imum is attained and W∞ 6= φ.

For L2-loss SVM, the situation is similar. The following
theorem shows that W∞ 6= φ.

Theorem 2 If L2 loss is used, then W∞ 6= φ and {wC}
converges to w∞.

2This has been mentioned in, for example, [10].

2.1.2 Logistic Regression
For LR, the situation is slightly different from that of lin-

ear SVM because W∞ may not exist. We explain below that
if the data set is separable, then it is possible that

infw L(w) = 0 (8)

and no minimum is attained because L(w) > 0,∀w. For
separable data, generally there exists a vector w such that

yiw
Txi > 0, ∀i.

Then (8) holds because

L(∆w) =
∑l

i=1
log(1 + e−yi∆w

Txi)→ 0 as ∆→∞.

The above discussion indicates that only if data are not
separable may we have a non-empty W∞. The following
definition formally defines non-separable data.

Definition 1 A data set is not linearly separable if for any
w 6= 0, there is an instance xi such that

yiw
Txi < 0. (9)

We have the following theorem on the convergence of {wC}.

Theorem 3 If LR loss is used and the non-separable condi-
tion (9) holds, then w∞ exists and {wC} converges to w∞.

2.2 Dual Solutions
Let αC be any optimal solution of the dual problem (5).

Subsequently we will investigate the relationship between
αC and C. An important difference from the analysis for
primal solutions is that αC may not be unique. This sit-
uation occurs if the dual objective function is only convex
rather than strictly convex (e.g., L1 loss). Therefore, we
analyze L2 and LR losses first because their αC is unique.

2.2.1 L2-loss SVM and Logistic Regression
The following theorem shows the asymptotic relationship

between αC and C.

Theorem 4 If L2 loss is used, then

lim
C→∞

(αC)i
C

= 2 max(0, 1− yiwT
∞xi), i = 1, . . . , l. (10)

If LR loss is used and the non-separable condition (9) is
satisfied, then

lim
C→∞

(αC)i
C

=
e−yiw

T
∞xi

1 + e−yiwT
∞xi

, i = 1, . . . , l. (11)

From Theorem 4, ‖αC‖ is unbounded for non-separable
data because the right-hand side in (10) and (11) is non-zero.
Therefore, we immediately have the following theorem.

Theorem 5 If the problem is not linearly separable, then

‖αC‖ → ∞ as C →∞.

Theorem 4 indicates that for non-separable data, αC is
asymptotically a linear function of C. In Section 3.1, we
will use this property to choose the initial solution after C
is increased. For separable data, the right-hand side in (10)
and (11) may be zero, so the asymptotic linear relationship
between αC and C may not hold. For simplicity, we omit
giving detailed analysis on separable data. Further, such
data are often easier for training.



2.2.2 L1-loss SVM
Although for L1 loss, the dual optimal αC may not be

unique, there exists a solution path from the earlier work in
[11].3 We extend their result to have the following theorem.

Theorem 6 If L1 loss is used, then there are vectors v1 and
v2, and a threshold C∗ such that after C ≥ C∗,

αC ≡ v1C + v2 (12)

is a dual optimal solution. The primal solution

wC = (Y X)TαC

is a constant vector the same as w∞, where X and Y are
defined in (6). Further,

(Y X)Tv1 = 0 and (Y X)Tv2 = w∞.

The following extension of Theorem 6 shows that, similar to
Theorem 4, most elements of αC become a multiple of C.

Theorem 7 Assume L1 loss is used. There exists a C∗ such
that after C ≥ C∗, any dual optimal solution αC satisfies

(αC)i = C if yiw
T
∞xi < 1,

(αC)i = 0 if yiw
T
∞xi > 1.

This theorem can be easily obtained by the fact thatwC =
w∞, ∀C ≥ C∗ from Theorem 6 and the optimality condition.
Like Theorem 5, we immediately get the unboundedness of
{αC} from Theorem 7.

3. WARM START FOR PARAMETER SE-
LECTION

In this section, we investigate issues in applying the warm-
start strategy for solving a sequence of optimization prob-
lems under different C values. The purpose is to select the
parameter C that achieves the best CV accuracy.

3.1 Selection of Initial Solutions
We consider the situation when

C is increased to ∆C,

where ∆ > 1. At the current C, let wC be the unique primal
optimal solution, while αC be any dual optimal solution. We
then discuss suitable initial solutions w̄ and ᾱ for the new
problem with the parameter ∆C.

From Theorems 1 and 6, wC is closed to (or exactly the
same as) w∞ after C is large enough, so naturally

w̄ = wC (13)

can be an initial solution. If a dual problem is solved, from
Theorem 4,

ᾱ = ∆αC (14)

is suitable for L2 or LR loss. We explain that (14) is also use-
ful for L1 loss although in Theorem 6, αC is not a multiple
of C, and αC is only one of the optimal solutions. Instead,
we consider Theorem 7, where αC is any optimal solution

3In [11], the loss function has an additional bias term:
max(0, 1 − y(wTx + b)). A careful check shows that their
results hold without b.

rather than the specific one in (12) of Theorem 6. Because
in general yiw

T
∞xi 6= 1, most of αC ’s elements are either

zero or C, and hence they are multiples of C. Thus, (14) is
a reasonable initial solution. Note that if αC is feasible for
(5) under C, then ᾱ also satisfies the constraints under ∆C.
Approaches similar to (14) to set the initial point for warm
start can be found in some previous works such as [5].

3.2 A Comparison on the Effectiveness of Pri-
mal and Dual Initial Solutions

In this subsection, we show that from some aspects, warm
start may be more useful for a primal-based training method.

First, from the primal-dual relationship (4), we have

wC =
∑l

i=1
(αC)iyixi. (15)

However, by Theorems 1 and 5, interestingly

wC → w∞ but ‖αC‖ → ∞.

Therefore, on the right-hand side of (15) apparently some
large values in αC are cancelled out after taking yixi into
consideration. The divergence of αC tends to cause more
difficulties in finding a good initial dual solution.

Next, we check primal and dual initial objective values
after applying warm start. The initial ᾱ based on (14) gives
the following dual objective value. For simplification, we use
w and α to denote wC and αC , respectively. Then,

h(∆α,∆C)− 1

2
∆2αT

(
Q+

D

∆

)
α

= ∆h(α, C)− 1

2
∆2αT

(
Q+

D

∆

)
α (16)

= ∆

(
1

2
αT (Q+D)α+

1

2
wTw + C

∑l

i=1
ξ(w;xi, yi)

)
− 1

2
∆2αT

(
Q+

D

∆

)
α (17)

= C∆
∑l

i=1
ξ(w;xi, yi) + (∆−∆2/2)wTw, (18)

where (16) is from

h(∆α,∆C) = ∆h(α, C)

in Eq. (31) of [20], (17) is from that primal and dual optimal
objective values are equal, and (18) is from that at optimum,

αTQα = wTw.

Note that

∆−∆2/2

is a decreasing function after ∆ ≥ 1. If ∆ = 2, we have

(18) = 2C
∑l

i=1
ξ(w;xi, yi)

≤ primal or dual optimal objective value at 2C

≤ 1

2
w̄T w̄ + 2C

∑l

i=1
ξ(w̄;xi, yi). (19)

Note that w̄ = w from (13). If w̄ is close to w∞, then the
primal initial objective value should be close to the opti-
mum. In contrast, from (19) we can see that the dual initial
objective value lacks a wTw/2 term. Therefore, it should
be less close to the optimal objective value.



Another difference between primal- and dual-based ap-
proaches is on the use of high-order (e.g., Newton) or low-
order (e.g., gradient) optimization methods. It has been
pointed out in [20] that a high-order method takes more
advantages of applying warm start. The reason is that if
an initial solution is close to the optimum, a high-order op-
timization method leads to fast convergence. Because the
primal problem is unconstrained, it is easier to solve it by
a high-order optimization method. In Section 4, we will
experimentally confirm results discussed in this Section.

3.3 Range of Regularization Parameters
In conducting parameter selection in practice, we must

specify a range of C values that covers the best choice. Be-
cause small and large C values cause underfitting and over-
fitting, respectively, and our procedure gradually increases
C, all we need is a lower and an upper bound of C.

3.3.1 Lower Bound of C
We aim at finding a C value so that for all values smaller

than it, underfitting occurs. If the optimal w satisfies

yiw
Txi < 1,∀i, (20)

then we consider that underfitting occurs. The reason is
that every instance imposes a non-zero L1 or L2 loss.

We then check for what C values, (20) holds. For L1 and
LR losses, if

C <
1

lmaxi ‖xi‖2
, (21)

then from (4) and the property αi ≤ C,

yiw
Txi ≤ |wTxi| ≤

∑l

j=1
|αj ||xT

j xi| < 1.

For L2-loss SVM, if

C <
1

2lmaxi ‖xi‖2
, (22)

then

yiw
Txi ≤ ‖w‖‖xi‖ ≤

√
‖w‖2 + 2CL(w) maxj ‖xj‖ (23)

≤
√

2f(0) maxj ‖xj‖ ≤
√

2Clmaxj ‖xj‖ < 1,

where (23) is from that w minimizes f(·).
The value derived in (21) and (22) can be considered as the

initial Cmin for the parameter search. One concern is that
it may be too small so that many unneeded optimization
problems are solved. In Section 4.4, we show that optimiza-
tion methods are very fast when C is small, so the cost of
considering some small and useless C values is negligible.

3.3.2 Upper Bound of C
Clearly, an upper bound should be larger than the best

C. However, unlike the situation in finding a lower bound,
where optimization problems with small C values are easy
to solve, wrongly considering a too large C value can dra-
matically increase the running time.

In an earlier study [14] on parameter selection for general
classification problems, they terminate the search procedure
if CV accuracy is not enhanced after a few trials. While the
setting is reasonable, the following issues occur.
- For small C values, the CV accuracy is stable, so the se-

lection procedure may stop pre-maturely. See more dis-
cussions in Section II of the supplementary materials.

- The CV accuracy may not be a monotonic increasing func-
tion before the best C. If the CV accuracy is locally stable
or even becomes lower in an interval, than the procedure
may stop before the best C.

For linear classification, based on results in Section 2, we
will describe a setting to terminate the search process by
checking the change of optimal solutions.

In Section 2, we showed that {wC} converge to w∞, and
for LR and L2-loss SVM, {αC/C} converges. Therefore, if
for several consecutive C values, {wC} or {αC/C} does not
change much, then wC should be close to w∞ and there is
no need to further increase the C value; see more theoretical
support later in Theorem 8. We thus propose a setting of
increasing C until either
- C ≤ C̄, where C̄ is a pre-specified constant, or
- optimal wC or αC/C is about the same as previous solu-

tions.
Deriving an upper bound C̄ is more difficult than a lower

bound in Section 3.3.1. However, with the second condi-
tion, a tight upper bound may not be needed. Thus in our
experiment, we simply select a large value.

For the second condition of checking the change of optimal
solutions, our idea is as follows. For optimal wC/∆ or αC/∆

at C/∆, we see if it is a good approximate optimal solution
at the current C. For easy description, we rewrite f(w) as

f(w;C)

to reflect the regularization parameter. We stop the proce-
dure for parameter selection if

‖∇f(w∆t−1C ; ∆tC)‖ ≤ ε‖∇f(0; ∆tC)‖ (24)

for t = −2,−1, 0,

where ε is a pre-specified small positive value. The condi-
tion (24) implies that w∆t−1C , the optimal solution for the
previous ∆t−1C, is an approximate solution for minimizing
the function f(w; ∆tC). We prove the following theorem to
support our use of (24). In particular, we check the rela-
tionship between wC/∆ and ∇f(w;C)

Theorem 8 Assume L(w) is continuously differentiable.
1. If non-separable condition (9) holds and ‖w∞‖ > 0,

then

wC1 6= wC2 ,∀C1 6= C2. (25)

2. We have

lim
C→0

‖∇f(wC/∆;C)‖
‖∇f(0;C)‖ =

∆− 1

∆
, and (26)

lim
C→∞

‖∇f(wC/∆;C)‖
‖∇f(0;C)‖ = 0. (27)

The result (25) indicates that in generalwC/∆ 6= wC , so (24)
does not hold. One exception is when C is large, wC/∆ ≈
wC ≈ w∞ from Theorem 1. Then (24) will eventually hold
and this property is indicated by (27). On the contrary,
when C is small, from (26) and the property that

∆ ≥ 1

1− ε implies
∆− 1

∆
≥ ε,

if ∆ is not close to one, (24) does not hold. Therefore, our
procedure does not stop pre-maturely.

Note that (24) can be applied regardless of whether a
primal-based or a dual-based optimization method is used.



Algorithm 1 A complete procedure for parameter section.

1. Given K as number of CV folds.
2. Initialize Cmin by (21) or (22), Cmax by a constant.
3. Initialize Cbest ← Cmin, best CV accuracy A← −∞.
4. For each CV fold k, give initial w̄k.
5. For C = Cmin,∆Cmin,∆

2Cmin, . . . , Cmax:
5.1. For each CV fold k = 1, . . . ,K:

5.1.1. Use all data except fold k for training.
Apply warm start with the initial point w̄k.
Obtain the solution wk

C .
5.1.2. Predict fold k by wk

C .

5.2. Obtain CV accuracy using results obtained in 5.1.
If the new CV accuracy > A:
A← the new CV accuracy.
Cbest ← C.

5.3. If (24) is satisfied:
break

5.4. For each CV fold k, w̄k ← wk
C .

6. Return Cbest.

If a dual-based method is considered, an optimal wC is re-
turned by (4) and we can still check (24).

3.4 The Overall Procedure
With all results ready, we propose in Algorithm 1 a practi-

cally useful procedure for selecting the parameter of a linear
classifier. We evaluate the CV accuracy from the smallest
parameter Cmin, and gradually increase it by a factor ∆; see
the sequence of C values shown in (1). In the CV procedure,
if the kth fold is used for validation, then all the remaining
folds are for training. Therefore, several sequences of op-
timization problems are solved. Although it is possible to
separately handle each sequence, here we consider them to-
gether. That is, at each C, the training/prediction tasks on
all folds are conducted to obtain the CV accuracy. Then
either the procedure is terminated or we go to the next ∆C.
Regarding the storage, all we need is to maintain the K
vectors of w, where K is the number of CV folds.

In Algorithm 1, we see the change of primal solutions is
checked for terminating the search process. Although both
primal- and dual-based optimization methods can be used
(from αC , primal wC can be easily generated), we expect
that a primal-based method is more suitable because of the
following properties.
- Primal solution wC is unique regardless of the loss func-

tion, but dual solution αC may not be unique for L1 loss.
- Primal solutions converge as C increases, but dual solu-

tions diverge (Sections 2 and 3.2).
- After applying warm start to have initial solutions, the

primal objective value tends to be closer to the optimum
than the dual (Section 3.2).

- The warm start strategy is more effective for a high-order
optimization approach (e.g., Newton method). Because
the primal problem (2) has no constraints, it is easier to
design a high-order solver. ([20] and Section 3.2).

Further, [20, Section 5] has pointed out that implementation
issues such as maintaining α make dual solvers more chal-
lenging to support warm start. We will detailedly compare
implementations using primal- and dual-based methods in
Section 4 and supplementary materials.

Table 1: Data statistics: Density is the average
ratio of non-zero features per instance.
Data set l: #instances n: #features density best C

madelon 2,000 500 100.00% 2−25

ijcnn 49,990 22 59.09% 25

webspam 350,000 16,609,143 0.02% 22

rcv1 677,399 47,236 0.15% > 210

yahoo-japan 176,203 832,026 0.02% 23

news20 19,996 1,355,191 0.03% > 210

4. EXPERIMENTS
We conduct experiments to verify the results discussed in

Sections 2 and 3, and check the performance of Algorithm 1.
Because of the space limitation, we present only results of
LR, but leave L2-loss SVM in the supplementary materials.4

We consider six data sets madelon, ijcnn, webspam (trigram
version), news20, rcv1, and yahoo-japan with statistics in Ta-
ble 1,5 where the last column is the best C with the highest
CV accuracy. We tried some large C to empirically confirm
that all these sets are not separable.

We consider Cmin to be the largest 2n that satisfies (21).
Following the discussion in (19), we use ∆ = 2, so the se-
quence of C values in (1) contains only powers of two. For
Cmax, we set it to be a large number 210, because as indi-
cated in Section 3.3, another condition (24) will be mainly
used to stop our procedure.

Our implementations are extended from LIBLINEAR [6],
and we use five-fold CV. We consider two optimization meth-
ods in our experiments. One is a dual coordinate descent
method [10] for solving the dual problem, while the other
is a Newton method [16] for solving the primal problem.
At Cmin, because of no prior information for warm start,
the default initial point in LIBLINEAR is used; see Step 4
in Algorithm 1. The two optimization methods have their
respective stopping conditions implemented in LIBLINEAR.
To fairly compare them, we modify the condition of the dual-
based method to be the same as the primal one:6

‖∇f(w)‖ ≤ εmin(l+, l−)

l
‖∇f(0)‖, (28)

where l+ and l− are the numbers of instances labelled +1
and −1, respectively. This condition is related to (24) used
for terminating the parameter search. If not specified, the
default ε = 10−2 in LIBLINEAR is used in our experiments.
We also change some settings of the solvers. Details are
in Section III of supplementary materials. Experiments are
conducted on two four-core computers with 2.0GHz/32GB
RAM and 2.5GHz/16GB RAM for webspam and other data
sets, respectively.

4.1 CV Accuracy and Training Time
We investigate in Figure 1 the relation between log2 C (x-

axis) and CV accuracy (y-axis on the left). The purpose is
to check the convergence of {wC} proved in Section 2. We

4L1-loss SVM is not considered because the primal-based
optimization method considered here cannot handle non-
differentiable losses.
5All data sets except yahoo-japan are available at http://
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.
6For any dual-based optimization method, we can easily ob-
tain an approximate primal solution by (4). On the contrary,
we may not be able to modify a primal-based method to use
the stopping condition of a dual-based method because from
a primal w it is difficult to generate a dual α.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Figure 1: CV accuracy and training time using LR with warm start. The two CV curves and the left y-axis
are the CV accuracy in percentage (%). The dashed lines and the right y-axis are the cumulative training
time in the CV procedure in seconds. The vertical line indicates the last C value checked by Algorithm 1.

show CV rates of using (28) with ε = 10−2 and 10−6 as
the stopping condition for finding wC ; see “CV Rate” and
“CV Tight” in Figure 1, respectively. We have the following
observations. First, for most problems, the CV accuracy is
stabilized when C is large. This result confirms the theoret-
ical convergence of {wC}. However, for the data set yahoo-
japan, the CV accuracy keeps changing even when C is large.
This situation may be caused by the following reasons.
- wC is not close enough to w∞ yet even though a large
C = 210 has been used.

- Training a problem under a large C is so time-consuming
that the obtained wC is still far away from the optimum;
see the significant difference of CV rates between using
loose and strict stopping tolerances for madelon, rcv1, and
yahoo-japan.7 Later in this section we will discuss more
about the relation between training time and C.

The above observation clearly illustrates where the difficulty
of parameter selection for linear classification lies. The area
of large C values is like a danger zone. Usually the best
C is not there, but if we wrongly get into the region, not
only does the lengthy training time may occur, but also the
obtained CV rates may be erroneous.

The second observation is that when C is small, the CV
accuracy is almost flat; see explanation in Section II of the
supplementary materials. Therefore, if we use the method
in [14] to check the change of CV accuracy, the search proce-
dure may stop too early. In contrast, we explained in Section
3.3.2 that our method will not stop until wC is close to w∞.

7It is surprising to see that for rcv1, a loose condition gives
flat CV rates, a situation closer to the convergence of {wC},
but a strict condition does not give that. The reason is
that because of using warm start, the initial w̄ from wC

immediately satisfies the loose stopping condition at ∆C, so
both the optimal solution and CV rate remain the same.

In Figure 1, we also show the cumulative CV training and
validation time of Algorithm 1 from Cmin to the current C;
see the dashed lines and the y-axis on the right. The curve of
cumulative time is up-bended because both solvers become
slower as C increases. Except news20, this situation is more
serious for the dual solver.8 A reason is that our dual solver
is a low-order optimization method. When C is large, the
problem becomes harder to solve, and a high-order method
such as the Newton method for the primal problem tends to
perform better. See more discussion in Section 4.3.

To remedy the problem of lengthy training when C is
large, recall in Section 3.3.2 we proposed a method to stop
the procedure according to the stopping condition of the
solver. The ending point of our procedure is indicated by a
vertical line in Figure 1. Clearly, we successfully obtain CV
accuracy close to the highest in the entire range.

Figure 1 confirms that we rightly choose Cmin smaller than
the best C. Although Cmin tends to be too small, in Figure
1, the training time for small C values is insignificant.

4.2 Initial Objective Values
We verify our discussion on primal and dual initial objec-

tive values in (19). If wC ≈ w∆C ≈ w∞, then the initial
objective value of primal solvers should be close to the opti-
mum, while the dual initial objective value is asymptoticly
smaller than the primal by ‖w̄∞‖2/2.

In Table 2, we show the difference between initial and
optimal objective values.

f(w̄)− f(wC) and fD(ᾱ)− fD(αC).

Note that f(wC) and fD(αC) are equal. Because the op-
timal wC and αC are difficult to compute, we obtain their

8Note that warm start has been applied. If not, the time
increase at large C values is even more dramatic.



Table 2: Difference between the initial and optimal function values. Logistic regression is used. The approach that is closer to
the optimum is boldfaced.

log2 C primal dual ‖w̄‖2/2 primal dual ‖w̄‖2/2 primal dual ‖w̄‖2/2
madelon ijcnn webspam

−4 2.51e−03 −1.09e−01 4.57e−02 1.30e+01 −4.55e+01 5.85e+01 1.63e+02 −3.86e+02 5.49e+02
0 2.62e−04 −1.45e+00 5.72e−02 1.31e+01 −1.90e+02 2.03e+02 1.12e+03 −3.26e+03 4.38e+03
4 0.00e+00 −1.29e+01 5.82e−02 1.50e+00 −2.64e+02 2.66e+02 8.28e+03 −2.33e+04 3.16e+04
8 0.00e+00 −1.17e+02 5.83e−02 9.86e−02 −2.71e+02 2.71e+02 5.32e+04 −1.76e+05 2.29e+05

rcv1 yahoo-japan news20
−4 3.23e+02 −1.04e+03 1.36e+03 6.19e+01 −1.27e+02 1.89e+02 2.19e+01 −1.43e+01 3.62e+01

0 1.60e+03 −6.02e+03 7.62e+03 9.00e+02 −1.40e+03 2.30e+03 3.78e+02 −6.32e+02 1.01e+03
4 1.20e+04 −3.33e+04 4.53e+04 1.85e+04 −2.66e+04 4.51e+04 2.26e+03 −7.91e+03 1.02e+04
8 9.53e+04 −2.70e+05 3.66e+05 1.21e+05 −4.07e+05 5.28e+05 5.33e+03 −3.64e+04 4.17e+04

approximations by running a huge number of iterations. We
show results of C = 2−4, 20, 24, 28, where w̄ and ᾱ are ob-
tained by solving problems of C = 2−5, 2−1, 23, 27 and ap-
plying (13) and (14). We use ε = 10−6 in (28) for this
experiment to ensure that the solution of the previous prob-
lem is accurate enough. In Table 2, we also show ‖w̄‖2/2
to see if, as indicated in (19), fD(ᾱ) − fD(αC) is close to
−‖w̄‖2/2 when C is large.

From Table 2, except some rare situations with small C
values, primal solvers have function values closer to the op-
timal value than the dual solvers. Further, as C increases,
fD(αC) − fD(ᾱ) becomes close to ‖w̄‖2/2 for most prob-
lems. Note that from (19),

f(w̄)− f(wC) =
1

2
(‖w̄‖2 − ‖wC‖2)+

C
∑l

i=1
(ξ(w̄;xi, yi)− ξ(wC ;xi, yi)) , and (29)

fD(ᾱ)− fD(αC) (30)

=− 1

2
‖wC‖2 + C

∑l

i=1
(ξ(w̄;xi, yi)− ξ(wC ;xi, yi)) .

For their first term, ‖w̄‖2 − ‖wC‖2 ≈ 0 in (29) as C → ∞,
but in (30), it converges to −‖w∞‖2/2. The situation of the
second term is unclear because ξ(w̄;xi, yi)−ξ(wC ;xi, yi)→
0 as C → ∞. However, C (ξ(w̄;xi, yi)− ξ(wC ;xi, yi)) in
Table 2 is relatively smaller than −‖wC‖2/2, and therefore,
the primal initial objective value is closer to the optimal
objective value than the dual. Finally, the dual solver fails
on the data set madelon because of the slow convergence.

4.3 Effectiveness of Warm-start Strategies
In Figure 2, we compare the running time with/without

implementing warm start. Each subfigure presents training
time versus the following relative difference to the optimal
objective value

f(w)− f(wC)

f(wC)
and

fD(α)− f(αC)

f(αC)
,

where wC or αC is an optimal solution and w or α is any
iterate in the optimization process. We use the best C value
before the vertical line in Figure 1. The initial point of warm
start is by (13) and (14), which use solutions at C/2.

If warm start is not applied, results in Figure 2 are con-
sistent with past works such as [10]:
- If the number of features is much smaller than instances

and C is not large (madelon and ijcnn), a primal-based
method may be suitable because of a smaller number of

variables. For the opposite case of more features, a dual-
based method may be used (webspam and yahoo-japan).

- If C is large, a high-order optimization approach such as
Newton methods is more robust (news20).

In practice, a stopping condition is imposed to terminate the
optimization procedure (e.g., running up to the horizontal
line in Figure 2, which indicates that the condition (28) with
LIBLINEAR’s default ε = 10−2 has been established).

After applying warm start, both primal and dual solvers
become faster. Therefore, warm start effectively reduces the
training time. However, Figure 2 focuses on the convergence
behavior under a given C. What we are more interested in is
the total training time of the parameter-selection procedure.
This will be discussed in Section 4.4.

4.4 Performance of the Parameter-selection Pro-
cedure

We compare the running time with/without applying warm-
start techniques. Figure 3 presents the cumulative CV train-
ing and validation time from Cmin to the current C. We can
make the following observations.
- The total running time (log-scaled in Figure 3) is signifi-

cantly reduced after applying warm start on both primal-
and dual-based optimization methods.

- While the dual coordinate descent method is faster when C
is small, its training time dramatically increases for large
C values. This result corresponds to our earlier discus-
sion that a low-order optimization method is not suitable
for hard situations such as when C is large. Even though
warm start significantly reduces the training time, for run-
ning up to a large C, it is generally less competitive with
the primal Newton method with warm start. Therefore,
using a high-order optimization method is a safer option
in parameter selection for avoiding lengthy running time.

4.5 CV Folds and Models
In Algorithm 1, data are split to K folds for the CV pro-

cedure. For each fold k, we maintain a vector wk that traces
initial and optimal solutions all the way from Cmin to Cmax.
To reduce the storage, an idea is to maintain only one vec-
tor across all folds. If fold 1 serves as a validation set, the
training set includes

fold 2, fold 3, . . . , fold K. (31)

Next, for validating fold 2, the training set becomes

fold 1, fold 3, . . . , fold K. (32)
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Figure 2: Objective values versus training time using LR and the best C found by Algorithm 1. The solid
lines correspond to settings without applying warm start, where default initial points in LIBLINEAR are used.
Primal-ws and Dual-ws are primal and dual solvers with warm-start settings, respectively, and the initial
point is obtained by (13) and (14). The horizontal line indicates that the condition (28) with LIBLINEAR’s
default ε = 10−2 has been established.

Table 3: CV accuracy using a dedicated w for each fold and
a shared w for all folds. See details in Section 4.5. The set
yahoo-japan is used. The highest CV rate is boldfaced.

C K models one model

21 92.60 92.66
23 92.69 92.80
25 92.59 92.56
27 92.34 94.27
29 92.21 98.01

The two training sets differ in only two folds: fold 1 and
fold 2. We have a scenario of incremental and decremental
learning [20], where fold 2 is removed, but fold 1 is added.
Then warm start can be applied. Specifically, the optimal
solution after training (31) can be used as an initial solution
for (32). Although this technique may reduce the storage
as well as the training time, we show that practically some
difficulties may occur.

In Table 3, we compare the two approaches of using K
and one vectors for storing the solutions. The approach
of maintaining one vector gives much higher CV accuracy
and a larger best C value. An investigation shows that two
reasons together cause an over-estimation.
- In training folds 1, 3, . . . , K to validate fold 2, our initial

point from training folds 2, 3, . . . , K contains information
from the validation set.

- in training folds 2, 3, . . . , K, we obtain only an approxi-
mate solution rather than the optimum.

That is, the initial point is biased toward fitting fold 2; this
issue should be fixed if we obtain the optimum of training
folds 1, 3, . . . , K, but in practice we do not. This experi-
ment shows that in applying the warm start technique, we

often conveniently assume that optimal solutions are exactly
obtained. This assumption is of course incorrect because of
numerical computation. While solving optimization prob-
lems more accurately may address the issue, the training
time also goes up, a situation that contradicts the goal of
applying the warm start technique. Our experiences indicate
that while warm start is very useful in machine learning, its
practical implementation must be carefully designed.

5. CONCLUSIONS
Although we have studied many issues on the parameter

selection for linear classifiers, there are some future works.
- Training tasks in the CV procedure under a given C are

independent. It is interesting to make a parallel imple-
mentation and investigate the scalability.

- Our method can be easily extended to L1-regularized prob-
lems. However, the relationship between optimization prob-
lems and regularization parameters must be studied be-
cause the primal optimal solution w may not be unique.

In conclusion, based on this research work, we have released
an extension of LIBLINEAR for parameter selection. It is
an automatic and convenient procedure for users without
background knowledge on linear classification.
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