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I. PROOFS
This section includes all proofs of theorems in the paper.

First we show a useful lemma.

Lemma 1 If w∞ exists, then for any C > 0, the norm of
the optimal solution wC is upper bounded by ‖w∞‖.

‖wC‖ ≤ ‖w∞‖, ∀C > 0. (I.1)

Proof. We prove the result by contradiction. If a wC
satisfies ‖wC‖ > ‖w∞‖, then

f(w∞)

C
=
‖w∞‖2

2C
+L(w∞) <

‖wC‖2

2C
+L(w∞) ≤ f(wC)

C
,

(I.2)
where the last inequality is from the definition of W∞ in
(2.1). Results in (I.2) contradict the fact that wC is the
optimal solution of (2).

I.1 Proof of Theorem 1
We first show that w∞ exists. Because W∞ 6= φ, we can

consider any w̄ ∈ W∞ and define the following bounded
region.

{w | ‖w‖ ≤ ‖w̄‖} ∩W∞. (I.3)

The continuity of L(w) implies that W∞ is closed. There-
fore, the new region defined in (I.3) is compact. This prop-
erty implies that the minimum value of (7) is attained. Fur-
thermore, L(w) is convex, so W∞ is convex as well. The
strict convexity of ‖w‖2 implies that w∞ is unique.

Next, by Lemma 1, (I.1) implies that

wC ∈ S,∀C > 0, (I.4)

where S is the following compact set

S ≡ {w | ‖w‖ ≤ ‖w∞‖}.

We then show that

lim
C→∞

f(wC)

C
= L(w∞). (I.5)

This result follows from taking the limit on

L(w∞) ≤ L(wC) ≤ f(wC)

C

≤ f(w∞)

C
=
‖w∞‖2

2C
+ L(w∞).

Finally, if the result in (7) does not hold, then there is a
sequence {wCj}∞j=1 and a positive number δ such that

‖wCj −w∞‖ ≥ δ,∀j = 1, 2, . . . . (I.6)

Because S is compact, there exists a convergent subsequence
{wCj}, j ∈ J such that

lim
j∈J,j→∞

wCj = w∗. (I.7)

From (I.4), w∗ ∈ S, so ‖w∗‖ ≤ ‖w∞‖. This property im-
plies

w∗ /∈W∞. (I.8)

Otherwise, ‖w∗‖ ≤ ‖w∞‖ and w∗ ∈W∞ indicates that w∗

is a solution of (7). However, (I.6) and the uniqueness of
the solution of (7) cause a contradiction.

From (I.8),

L(w∗) > L(w∞).

However, (I.5), (I.7), and the continuity of L(w) imply that

L(w∗) = L(w∞),

so we have a contradiction. Therefore, the proof is complete.

I.2 Proof of Theorem 2
It is sufficient to prove that there exists a w∗ such that

L(w∗) = inf
w
L(w).

The optimization problem infw L(w) can be rewritten as

min
w,ξ

‖ξ‖2

subject to yiw
Txi ≥ 1− ξi, i = 1, . . . , l. (I.9)

Note that (w, ξ) = (0, e) satisfies the constraints, so (I.9) is
feasible. Besides, the feasible region of (I.9) is a polyhedral,
and the objective function ‖ξ‖2 is convex quadratic. By [5,
Corollary 27.3.1], the infimum value is attained.



I.3 Proof of Theorem 3
From Theorem 1, we only need to show that under condi-

tion (9), there exists a w∗ such that

L(w∗) = inf
w
L(w). (I.10)

Because

inf
w
L(w) ≤ L(0),

there exists a sequence {wk} such that

L(wk) ≤ L(0), ∀k,

and

lim
k→∞

L(wk) = inf
w
L(w).

Then

0 ≤ log(1 + e−yiw
T
k xi) ≤ L(0), ∀i, k,

so there are a subset J and constants L1, . . . , Ll, such that

lim
k∈J,k→∞

log(1 + e−yiw
T
k xi) = Li,∀i. (I.11)

If Li 6= 0, ∀i, then

lim
k∈J,k→∞

Y Xwk = v, (I.12)

where X and Y are defined in (6), and

v =

− log(eL1 − 1)
...

− log(eLl − 1)

 .
We prove Li 6= 0,∀i later. If it is true, from (I.12), we show
that there exists w∗ such that

Y Xw∗ = v. (I.13)

and therefore infw L(w) is attained. Otherwise, because

min
w
‖Y Xw − v‖2

attains a minimum ŵ following from [5], if no w∗ exists, we
have

Y Xŵ 6= v.

However, (I.12) implies that we can always find wk such
that

‖Y Xwk − v‖ < ‖Y Xŵ − v‖,

a situation that violates the optimality of ŵ.
The remaining task is to prove that Li 6= 0, ∀i. If this

result does not hold, then there exists an index i such that
Li = 0. From (I.11),

e−yiw
T
k xi → 0 and yiw

T
k xi →∞ as k →∞, k ∈ J. (I.14)

Thus J must be an infinite set. We have

‖wk‖ → ∞. (I.15)

Otherwise, the boundedness of ‖wk‖ and |yiwT
k xi| ≤ ‖wk‖‖xi‖

violate (I.14). From (I.15), wk 6= 0 after k is large enough,
so we can consider a sequence {wk/‖wk‖}. Because this se-
quence is in a compact set, there exists a subset J ′ of J and
a point ŵ such that

lim
k→∞,k∈J′

wk
‖wk‖

= ŵ. (I.16)

From (9), there is an instance xr such that

yrw̄
Txr = −ε < 0.

With (I.16), we can further find a subset J ′′ of J ′ such that

yrw
T
k xr ≤ −

ε

2
‖wk‖ < 0, ∀k ∈ J ′′.

Then as k →∞,

L(wk) ≥ log(1 + e−yrw
T
k xr )

≥ log(1 + eε‖wk‖/2)

→∞

following from (I.15). This result violates the fact that

L(wk)→ inf
w
L(w) ≤ L(0).

Therefore, Li 6= 0, ∀i and the proof is complete.

I.4 Proof of Theorem 4
From the optimality condition (see, for example, Section

3.4 in [6]),

(αC)i
C

= 2 max(0, 1− yiwT
Cxi), ∀i, (I.17)

and

(αC)i
C

=
e−yiw

T
Cxi

1 + e−yiw
T
C
xi
, ∀i (I.18)

for L2 and logistic losses, respectively. With wC → w∞ by
Theorems 2 and 3 and the continuity of max and exponen-
tial functions, taking the limit of (I.17) and (I.18) gives the
desired results.

I.5 Proof of Theorem 5
Because data are not separable, Theorem 3 implies that

w∞ exists. Then from the Definition 1, there exists an in-
stance xi such that

yiw
T
∞xi < 0.

From Theorem 4, clearly (αC)i →∞ as C →∞.

I.6 Proof of Theorem 6
The existence of C∗, v1 and v2 and the optimality of αC

have been proved in [2, Theorem 3]. From Theorem 1 and
(4),

lim
C→∞

wC
C

= 0 = (Y X)Tv1.

Then

wC = (Y X)Tv2 = w∞, ∀C ≥ C∗.

I.7 Proof of Theorem 7
See the paper.

I.8 Proof of Theorem 8
We prove (25) by contradiction. Firstly, we show that if

wC1 = wC2 , (I.19)

then

wC1 = wC2 = w∞. (I.20)



Because f(w) is convex, the gradient at the optimal solution
is zero. Therefore, from (I.19),

∇f(wC1) = wC1 + C1∇L(wC1) = 0,

∇f(wC2) = wC2 + C2∇L(wC2)

= wC1 + C2∇L(wC1) = 0.

Then,

∇L(wC1) =
(wC1 + C1∇L(wC1))− (wC1 + C2∇L(wC1))

C1 − C2

= 0.

By the convexity of L(w), wC1 is an optimal solution of
L(·), so wC1 ∈ W∞. By Lemma 1, ‖wC1‖ ≤ ‖w∞‖, so by
the definition of w∞ in (7), wC1 = wC2 = w∞.

By the assumption ‖w∞‖ 6= 0 and the fact that w∞ min-
imizes L(w),

∇f(w∞) = w∞ + C1∇L(w∞) = w∞ 6= 0. (I.21)

Hence wC1 6= w∞, a contradiction to (I.20). Therefore,
(I.19) does not hold, and hence wC1 6= wC2 .

For (26), we can obtain the result by taking limit to the
following equation.

‖∇f(wC/∆;C)‖
‖∇f(0;C)‖ =

‖wC/∆ + C∇L(wC/∆)‖
C‖∇L(0)‖

=
(C − C/∆)‖∇L(wC/∆)‖

C‖∇L(0)‖

=
∆− 1

∆

‖∇L(wC/∆)‖
‖∇L(0)‖ . (I.22)

When C → 0, wC/∆ → 0. By the continuity of ∇L(·),

lim
C→0
∇L(wC/∆) = ∇L(0).

Therefore, (I.22) converges to (∆− 1)/∆ when C → 0.
For (27), because {wC} converges to w∞ and ∇L(w∞) =

0, the continuity of ∇L(·) implies that (I.22) converges to
zero as C goes to ∞.

II. CV ACCURACY UNDER SMALL REG-
ULARIZATION PARAMETER

In this section, we explain that the CV accuracy tends
to be fixed when C is close to zero. Firstly, we prove the
following lemma.

Lemma 2 If L(w) is nonnegative,

lim
C→0

f(wC) = lim
C→0
‖wC‖ = 0. (II.1)

Proof. Since

0 ≤ ‖wC‖
2

2
≤ f(wC) ≤ f(0),

by taking limit to both sides, we have

0 ≤ lim
C→0

‖wC‖2

2
≤ lim
C→0

f(wC) ≤ lim
C→0

f(0) = lim
C→0

CL(0) = 0.

Therefore, (II.1) follows.

Then we discuss the three losses separately. For L1-loss
SVM, Lemma 2 implies that when C is small enough,

‖wT
Cxi‖ < 1 for all i = 1, . . . , l.

Hence, ξ(wC ;xi, yi) > 0. By the KKT condition, αi = C
for all i. With (4), for any test instance x,

sgn(wT
Cx) = sgn(

l∑
i=1

yiCx
T
i x) = sgn(

l∑
i=1

yix
T
i x)

is independent of C.
For L2-loss SVM, by the KKT condition,

αi = 2C max(1− yiwT
Cxi, 0), ∀i = 1, . . . , l. (II.2)

When wC is close to zero, (II.2) becomes

αi = 2C(1− yiwT
Cxi),

and αi is close to 2C. Therefore, for any test instance x,

sgn(wT
Cx) = sgn(

l∑
i=1

yiαix
T
i x)

= sgn(

l∑
i=1

2C(1− yiwT
Cxi)yix

T
i x)

= sgn(

l∑
i=1

(1− yiwT
Cxi)yix

T
i x). (II.3)

If
l∑
i=1

yix
T
i x 6= 0,

then because ‖wC‖ → 0 from Lemma 2, when C is small
enough,

(II.3) = sgn(

l∑
i=1

yixix).

The prediction is almost independent of C.
Similarly, for logistic regression, we have the following

equality from the KKT condition.

αi =
C

1 + eyiw
T
C
xi
, (II.4)

where the value is close to C/2 when ‖wC‖ is small. For
any test instance x,

sgn(wT
Cx) = sgn(

l∑
i=1

yiαix
T
i x)

= sgn

(
l∑
i=1

C

1 + eyiw
T
C
xi
yix

T
i x

)

= sgn

(
l∑
i=1

yix
T
i x

1 + eyiw
T
C
xi

)

= sgn(

l∑
i=1

yix
T
i x)

if
l∑
i=1

yix
T
i x 6= 0,

and C is small. The prediction is almost independent of C.
Note that the result is slightly different from [3, Case 1],

where they consider the decision and the loss functions with
a bias term:

wTx+ b.



They prove that, for L1-loss SVM, the decision function al-
ways outputs the major class when C is small. Although
their result also implies that the CV accuracy is fixed when
C is small, the value may be different from ours here. When
wC is small, the bias term b dominates the decision value
wT
Cx + b, so the major class is predicted. On the other

hand, our decision function does not have a bias term, so
the results still depend on wT

Cx.

III. A DETAILED COMPARISON USING PRI-
MAL NEWTON AND DUAL COORDI-
NATE DESCENT METHODS

We begin with describing some implementation details
and then give a detailed comparison.

III.1 Implementation Details
We slightly adjust solvers in LIBLINEAR for the purpose

of experiments.

III.1.1 Primal-based Stopping Condition
As mentioned in Section 4, we need to make primal New-

ton and dual coordinate descent (CD) methods have the
same stopping condition to have a fair comparison. While
the dual solver’s stopping condition can check either the op-
timality condition of the dual or the primal variables, the
primal solver only has the primal variables. Therefore we
modified our dual solver to check the optimality condition
(28) of the primal variables, so both solvers have the same
stopping condition.

However, it is not trivial to evaluate the primal stopping
condition (28) for the dual CD method. CD is an efficient
method that takes only O(nl) operations for updating all
variables once (called an outer iteration in [1]), while eval-
uating the stopping condition (28) has the same time com-
plexity. If we check the stopping condition in each iteration,
a large portion of the training time is used for this extra
condition check instead of solving the optimization problem.
Therefore, we only check (28) once in every k iterations. We
use k = 10 in our experiments.

However, the setting of checking the primal-based stop-
ping condition once per k iterations may still have a huge
affection on the training time when the number of iterations
is small. For example, if the dual solver’s default stopping
condition can be reached in two iterations, the training time
becomes five times because at least 10 iterations are needed.
Although this situation seldom happens because the dual
solver’s stopping condition is usually stricter than (28), we
decide to keep the original condition and use it along with
(28).

III.1.2 Practical Implementation of (24)

When we introduced (24) as the stopping condition for
the parameter selection procedure, we assume that wC is
the optimal solution for minimizing f(w;C). Practically,
we have only an approximate solution w̃C , so w∆t−1C in
(24) must be replaced by w̃∆t−1C .

If a primal-based solver is used, we then have the following
property. At ∆−2C, the initial solution is

w̄∆−2C = w̃∆−3C .

Because (24) has the same form as the stopping condition
(28) for solving the optimization problem under a fixed regu-

larization parameter,1 it implies that w̄∆−2C is immediately
returned as the approximate solution without any iteration.
Therefore,

w̃∆−2C = w̄∆−2C = w̃∆−3C .

By the same reason, we have

w̃∆−3C = w̃∆−2C = w̃∆−1C = w̃C . (III.1)

Therefore, in our implementation, we simply check the num-
ber of times where the initial and the returned solutions of
the optimization solver are the same. That is, if the count
reaches three for a continuous sequence of ∆−2C, ∆−1C, and
C, then the procedure for the parameter selection stops.

If the dual solver is used, the situation is different. At
∆−3C, we have an approximate dual solution α̃∆−3C and
the corresponding primal solution w̃∆−3C with

w̃∆−3C =
∑l

i=1
yi(α̃∆−3C)ixi.

Assume w̃∆−3C satisfies (24) with t = −2:

‖∇f(w̃∆−3C ; ∆−2C)‖ ≤ ε‖∇f(0; ∆−2C)‖. (III.2)

Then the procedure continues to find an approximate solu-
tion α̃∆−2C . The dual initial solution is

ᾱ∆−2C = ∆α̃∆−3C . (III.3)

Because we check the primal-based stopping condition (28)
for the dual coordinate descent method, with (III.3) it is like
that we start with

w̄∆−2C = ∆w̃∆−3C

in checking this condition. It is less likely that

‖∇f(∆w̃∆−3C ; ∆−2C)‖ ≤ ε‖∇f(0; ∆−2C)‖

holds because we have assumed in (III.2) that w̃∆−3C is a
good approximate solution for minimizing f(w; ∆−2C) and
we have the property that {wC} converges to w∞. There-
fore, the optimization procedure does not stop in the be-
ginning. Instead, it takes several steps before reaching the
stopping criterion. Then

w̃∆−2C 6= w̃∆−3C (III.4)

and w̃∆−2C is a better approximate solution than w̃∆−3C

at ∆−2C. By the convergence of {wC}, w̃∆−2C tends to be
a better solution than w̃∆−3C for minimizing the function
f(w; ∆−1C). That is, w̃∆−2C more easily satisfies

‖∇f(w̃∆−2C ; ∆−1C)‖ ≤ ε‖∇f(0; ∆−1C)‖,

which is the next condition in (24) to be checked. Therefore,
we expect that the parameter-selection procedure stops ear-
lier if the dual solver is used, and we will verify this result
in Section III.2.1.

Because of (III.4), right after C is increased and before op-
timization solver is called, we must check (24) with gradient
evaluations. In contrast, the implementation is easier if we
apply a primal-based optimization method of using (28) as
the stopping condition. The reason is that we can take the
advantage of (III.1) by checking the difference of w̃ vectors
without gradient evaluations.

1Note that here we assume that (24) has been slightly mod-
ified to have the term min(l+, l−)/l in (28).



III.1.3 Maximum Iterations
Another implementation issue is when the solver should

stop if the solver’s stopping condition can hardly be reached.
For example, in Section 4 we have shown that the dual CD
method has lengthy iterations when C is large. To avoid
unreasonable long training time, all solvers in LIBLINEAR
stop when a maximal number of iterations is reached even
if the stopping condition is not satisfied. To make (28) as
the stopping condition used for both primal and dual solvers
in most cases, we increase the default 1,000 maximum itera-
tions to 10,000 and 100,000, respectively. Note that the limit
for dual is higher because usually its number of iterations is
higher than that of primal.

III.1.4 An Improvement of the Newton Method
When solving the optimization problem in step 5.1.1 of

Algorithm 1, a trust region Newton method [4] computes the
Newton direction s in each iteration by solving the following
trust-region sub-problem.

min
s

∇f(w)Ts+
1

2
sT∇T f(w)s (III.5)

subject to ‖s‖ ≤ δ,

where w is the current iterate and δ is the size of the trust
region. A Conjugate Gradient (CG) method is used to ap-
proximately solve (III.5). CG is an iterative procedure that
is terminated by LIBLINEAR if either s exceeds the trust
region or

‖∇f(w) +∇2f(w)s‖ ≤ εCG‖∇f(w)‖, (III.6)

where εCG = 0.1.
When w is close to the optimal wC , ‖∇f(w)‖ is small.

Then the stopping condition becomes stricter. Therefore, for
a Newton method starting with initial w = 0, CG stopping
condition (III.6) is loose in the beginning, but is tight in
the end. Now with warm start, because {wC} → w∞, the
initial w̄ = wC is close to w∆C for a large C and the CG
stopping condition is tight in the beginning. For a truncated
Newton method such as the trust region Newton method,
early directions are not good enough, so there is no need
to accurately solve (III.5). Therefore, under the warm-start
setting, the original εCG = 0.1 in LIBLINEAR may cause a
too tight condition.

To understand the performance under different εCG val-
ues, in Table I, we show the CV time and the CV rate under
εCG = 0.1 and 0.5 for some data sets. The columns in Table
I are defined as follows.
• stop C: the last C that the parameter-selection proce-

dure checked. That is, the C value which satisfies the
termination criterion (24) of the parameter-selection
procedure.
• stop time: The cumulative CV time (in seconds) from
Cmin to the stop C.
• best rate: The best CV rate achieved by checking from
Cmin to the stop C.
• total time: The total CV time (in seconds) from Cmin

to Cmax.
We see that εCG does not affect the found best CV rate and
the corresponding C very much, but in document data such
as yahoo-japan and yahoo-korea, the CV time is dramatically
reduced by using εCG = 0.5. The setting of εCG = 0.1 causes
too many CG steps in the first several (outer) iterations.

Table I: Comparison of primal Newton method with
εCG = 0.1 or 0.5.

Data set εCG
stop stop best total

log2 C time rate time

a9a
0.1 -2 1.87e+01 84.77 2.30e+01
0.5 0 2.18e+01 84.80 2.42e+01

covtype scale
0.1 -4 6.40e+02 75.66 7.22e+02
0.5 -4 6.37e+02 75.67 7.17e+02

german scale
0.1 -1 1.74e−01 77.10 1.98e−01
0.5 -1 2.00e−01 77.10 2.20e−01

ijcnn1
0.1 3 1.03e+01 92.43 1.11e+01
0.5 3 9.41e+00 92.42 1.01e+01

rcv1 test
0.1 4 8.85e+02 97.75 9.33e+02
0.5 4 8.30e+02 97.75 8.79e+02

webspam (unigram)
0.1 7 1.42e+03 92.57 1.59e+03
0.5 4 1.23e+03 92.62 1.28e+03

yahoo-japan
0.1 3 1.79e+03 92.69 1.79e+03
0.5 3 1.27e+03 92.68 1.27e+03

yahoo-korea
0.1 5 1.60e+04 86.89 1.60e+04
0.5 5 8.40e+03 86.86 8.40e+03

Although for some data sets the total CV time increases
instead, the difference is relatively minor.

As a result, we believe that using a larger εCG = 0.5 is a
generally better setting when warm start is applied. For con-
sistency, we use this setting for all experiments with/without
warm start. That is, when standard LIBLINEAR is used in
Section 4, we change εCG to 0.5 from the default 0.1.

III.2 Comparison Results
We check the performance of both two-class and multi-

class problems in LIBSVM data sets.2 Because of the large
amount of data sets, we run experiments on many machines
at the same time. Although these machines have different
computation capability, we ensure that the primal and the
dual solvers run on the same machine for any data set. By
the same reason, training time of the six selected data sets
presented in the paper may be different from the time shown
here.

The data statistics are in Tables II and III.

III.2.1 Two-class Problems
We apply our parameter-selection procedure on data sets

listed in Table II. The columns are defined in Section III.1.4.
We terminate the process if it does not stop in three days.
In this case, we indicate “not finished” in the table.

We have some observations from Table IV. Firstly, be-
cause the optimization problem is not exactly solved, the
best CV rates of the two solvers may be different on some
data sets. For few cases the stopping condition (28) is too
loose to get the true CV. We will discuss this issue in Sec-
tion III.3. Secondly, the dual CD method usually terminates
with a smaller C. This result verifies our expectation in Sec-
tion III.1.2. Finally, for data sets with more instances than
features, the primal Newton method is more competitive.
On the other hand, for sparse document data sets, which
have many features, the dual CD method is usually fast if
we compare the training time from Cmin to the best C. In
addition to the fact that the dual CD method is more effi-

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Table II: Two-class data statistics: Density is the
average ratio of non-zero features per instance.

Data set l n density
a1a 1,605 119 11.649%
a2a 2,265 119 11.651%
a3a 3,185 122 11.365%
a4a 4,781 122 11.365%
a5a 6,414 122 11.366%
a6a 11,220 122 11.368%
a7a 16,100 122 11.369%
a8a 22,696 123 11.277%
a9a 32,561 123 11.276%
australian 690 14 100.000%
australian scale 690 14 87.443%
breast-cancer 683 10 100.000%
breast-cancer scale 683 10 100.000%
cod-rna 59,535 8 100.000%
colon-cancer 62 2,000 100.000%
covtype 581,012 54 21.998%
covtype scale 581,012 54 22.121%
diabetes 768 8 100.000%
diabetes scale 768 8 99.854%
duke 44 7,129 100.000%
epsilon normalized 400,000 2,000 100.000%
fourclass 862 2 100.000%
fourclass scale 862 2 99.594%
german 1,000 24 100.000%
german scale 1,000 24 95.837%
gisette scale 6,000 5,000 99.100%
heart 270 13 100.000%
heart scale 270 13 96.239%
ijcnn1 49,990 22 59.091%
ionosphere scale 351 34 88.411%
KDD2010-a 8,407,752 20,216,830 0.000%
KDD2010-b 19,264,097 29,890,095 0.000%
leu 38 7,129 100.000%
liver-disorders 345 6 100.000%
liver-disorders scale 345 6 99.082%
madelon 2,000 500 100.000%
mushrooms 8,124 112 18.750%
news20 19,996 1,355,191 0.034%
rcv1 test 677,399 47,236 0.155%
rcv1 train 20,242 47,236 0.157%
real-sim 72,309 20,958 0.245%
skin nonskin 245,057 3 100.000%
sonar scale 208 60 99.992%
splice 1,000 60 100.000%
splice scale 1,000 60 100.000%
svmguide1 3,089 4 100.000%
svmguide3 1,243 22 99.495%
url combined 2,396,130 3,231,961 0.004%
w1a 2,477 300 3.823%
w2a 3,470 300 3.878%
w3a 4,912 300 3.885%
w4a 7,366 300 3.892%
w5a 9,888 300 3.881%
w6a 17,188 300 3.888%
w7a 24,692 300 3.890%
w8a 49,749 300 3.883%
webspam (trigram) 350,000 16,609,143 0.022%
webspam (unigram) 350,000 254 33.517%
yahoo-japan 176,203 832,026 0.016%
yahoo-korea 460,554 3,052,939 0.011%

Table III: Multi-class data statistics: Density is the
average ratio of non-zero features per instance.
Data set l n #classes density
acoustic 78,823 50 3 100.000%
acoustic scale 78,823 50 3 100.000%
aloi 108,000 128 1,000 23.982%
aloi scale 108,000 128 1,000 23.982%
combined 78,823 100 3 100.000%
combined scale 78,823 100 3 100.000%
connect-4 67,557 126 3 33.333%
covtype 581,012 54 7 21.998%
covtype scale 581,012 54 7 22.222%
covtype scale01 581,012 54 7 22.121%
dna scale 2,000 180 3 25.342%
glass scale 214 9 6 99.844%
iris scale 150 4 3 97.833%
letter scale 15,000 16 26 100.000%
mnist 60,000 780 10 19.218%
mnist8m 8,100,000 784 10 25.388%
mnist8m scale 8,100,000 784 10 25.388%
mnist scale 60,000 780 10 19.218%
news20 15,935 62,061 20 0.129%
news20 scale 15,935 62,061 20 0.129%
pendigits 7,494 16 10 87.182%
poker 25,010 10 10 100.000%
protein 17,766 357 3 28.999%
rcv1 test multiclass 518,571 47,236 53 0.137%
rcv1 train multiclass 15,564 47,236 51 0.140%
satimage scale 4,435 36 6 98.990%
sector 6,412 53 105 617.218%
sector scale 6,412 55,197 105 0.295%
segment scale 2,310 19 7 94.484%
seismic 78,823 50 3 100.000%
seismic scale 78,823 50 3 100.000%
shuttle scale 43,500 9 7 99.771%
svmguide2 391 20 3 100.000%
svmguide4 300 10 6 100.000%
usps 7,291 256 10 100.000%
vehicle scale 846 18 4 98.023%
vowel 528 10 11 99.943%
vowel scale 528 10 11 100.000%
wine scale 178 13 3 99.870%



cient to handle document data, another reason of the faster
training is that it stops the parameter-selection procedure at
a smaller C. However, if we check the total time, the primal
Newton method may still be competitive; see, for example,
KDD2010-a. The result is consistent with the known prop-
erty that a first-order optimization method like the dual CD
method is slower when C is large.

III.2.2 Multi-class Problems
LIBLINEAR implements a one-versus-the-rest approach for

multi-class problems, so several two-class problems are solved.
We terminate the parameter-selection procedure if the stop-
ping condition (28) holds for all two-class problems.

By the same setting for binary data sets, we check the
performance on multi-class problems listed in Table III and
present results in Table V. The observations of multi-class
problems are consistent to those of two-class problems.

III.3 Strictness of the Stopping Condition
In Tables IV and V, we can find some data sets where

the dual CD method has much higher CV accuracy than
the primal Newton method. In Section III.2.1, we suspected
that the stricter stopping condition for the dual CD method
causes such results. We conduct experiments to check data
sets with this problem by varying the stopping tolerance ε for
the primal Newton method. We include one data set (ijcnn)
that does not suffer from this problem in this experiment
as a comparison. Results are in the left columns of Table
VI. The best CV rates are similar for ijcnn under different
ε values. However, for other data sets, the best CV rate
increases when we use a smaller ε. This observation implies
that for these data sets, the stopping tolerance itself is also
a parameter that must be tuned.

To alleviate the above problem, we can always use a strict
stopping tolerance, but training time may increase for other
data sets. Besides, it is hard to find a good stopping toler-
ance that is small enough for all data sets. Therefore, we
propose an interactive setting to help users improve their
model if they think the stopping tolerance is not strict enough.
The procedure is as follows.
1. The parameter-selection procedure stops at C̃ and out-

puts wk
C̃
, k = 1, . . . ,K for all K CV folds.

2. If users think the procedure stops too early with inac-
curate CV accuracy because of the stopping tolerance,
they can specify a stricter stopping condition to run the
procedure again. They do not need to start from Cmin.
Instead, the parameter-selection procedure starts at C̃
and uses wk

C̃
as the initial solution for training.

3. If the problem of using a too large tolerance still occurs,
users can go back to step 1 and repeat the process.

We present the result of the above interactive procedure in
the right columns of Table VI. A concern on our procedure is
that the best C may be smaller than the initial C̃ considered
in step 2. However, a comparison between left and right
columns in Table VI shows that the proposed interactive
procedure can effectively select a C value with CV accuracy
close to the best, while requires less training time than the
setting of always using a small tolerance.

However, wk
C̃

is not always necessary to output, and sav-
ing and loading K models also make the implementation
more complicated. Therefore, we also consider using 0 as
the initial solution in step 2. The results are in Table VII.3

3The experiments of Tables VI and VII are conducted on

Table VII shows that the improvement without using wk
C̃

is
still very effective. Therefore, we include this version in our
released parameter-selection tool.

III.4 Summary
In summary of the comparison between the primal Newton

method and the dual CD method, we have the following
observations.
1. Although the dual CD method can solve large document

data sets more efficiently than the primal Newton method,
the advantage is weakened when C is very large. The sit-
uation can be very serious for some problems. To avoid
having such bad situations, we choose the primal Newton
method in our tool.

2. The CG stopping tolerance εCG chosen for the primal
Newton method of solving a single optimization problem
may be too tight when we solve a sequence of problems
using warm start.

3. Although the primal Newton method needs a stricter
stopping tolerance on some data sets, we designed an in-
teractive utility to effectively alleviate this problem.

IV. EXPERIMENTAL RESULTS OF L2-LOSS
SVM

We conduct experiments on L2-loss SVM under the same
setting as logistic regression. Figure I is the CV accuracy
and CV training/validation time under different regulariza-
tion parameters. Note that the best C tends to be smaller
than that of logistic regression. The reason is that L2-loss
function gives a larger penalty for a wrong prediction. Ta-
ble VIII is the initial function values of the primal and dual
solvers. Figure II demonstrates the training time versus the
relative difference from the optimal objective value under
the best C values found by Algorithm 1. The comparison
of cumulative running time with/without warm start is in
Figure III.
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Table IV: Comparison of primal Newton method and dual CD method (binary data sets).
dual primal

Data set stop log2 C stop time best rate total time stop log2 C stop time best rate total time
a1a 5 1.05 83.24 2.47 10 0.57 83.18 0.57
a2a 5 2.57 82.08 5.23 6 1.04 82.03 1.12
a3a 4 2.30 83.61 5.36 8 1.75 83.58 1.79
a4a 3 2.25 84.40 4.84 8 1.46 84.44 1.52
a5a 4 8.63 84.44 16.02 4 4.60 84.44 5.21
a6a 1 12.62 84.28 23.39 3 8.20 84.30 9.52
a7a 0 7.23 84.57 15.02 6 5.48 84.56 6.04
a8a 0 20.62 84.51 40.65 3 16.08 84.53 18.95
a9a -1 21.00 84.79 37.95 4 11.93 84.80 13.56
australian -16 0.39 85.80 129.38 -12 0.43 68.99 0.62
australian scale 4 0.19 86.96 0.32 6 0.08 86.81 0.09
breast-cancer -37 0.09 94.73 1,013.96 -35 0.05 65.01 0.13
breast-cancer scale 4 0.15 96.78 0.22 6 0.06 96.63 0.07
cod-rna -13 71.52 93.36 22,225.90 -10 37.93 87.56 54.00
colon-cancer 3 1.24 83.87 1.42 6 1.93 83.87 2.02
covtype -21 140.44 75.58 not finished -17 92.88 61.30 235.85
covtype scale -1 456.23 75.66 714.25 0 453.72 75.67 537.97
diabetes -3 2.67 68.36 22.89 -4 0.14 67.97 0.18
diabetes scale 7 0.24 77.34 0.27 6 0.12 77.34 0.13
duke 1 1.50 88.64 1.80 6 1.53 88.64 1.63
epsilon normalized 6 11,074.39 89.80 15,451.41 6 13,605.46 89.81 14,500.33
fourclass -7 0.14 73.78 0.32 -4 0.06 73.78 0.08
fourclass scale 5 0.10 68.68 0.14 7 0.04 68.68 0.05
german 0 1.94 77.20 13.73 2 0.21 76.50 0.24
german scale 4 0.42 77.20 0.61 5 0.24 77.10 0.27
gisette scale 0 225.62 97.22 263.80 0 225.92 97.27 261.16
heart 1 12.89 84.07 58.98 1 0.06 83.70 0.07
heart scale 6 0.28 83.33 0.36 8 0.19 83.33 0.23
ijcnn1 4 43.50 92.46 60.54 6 35.74 92.42 37.67
ionosphere scale 8 1.40 84.62 1.88 10 0.49 84.33 0.49
KDD2010-a -3 13,711.68 88.24 71,712.26 2 54,877.52 88.23 56,312.56
KDD2010-b -3 31,599.50 88.89 102,894.63 2 98,611.87 88.85 101,344.49
leu 2 1.56 89.47 1.87 4 1.80 92.11 2.01
liver-disorders -3 0.95 69.57 2.62 0 0.17 70.14 0.22
liver-disorders scale 10 0.26 66.67 0.26 10 0.05 66.09 0.05
madelon -8 9,233.95 60.30 128,458.04 -4 48.09 60.30 54.02
mushrooms 1 3.31 99.98 3.95 4 2.30 99.96 2.61
news20 10 178.54 96.56 178.54 10 257.85 96.46 257.85
rcv1 test 3 1,420.24 97.77 1,944.22 7 1,462.53 97.75 1,524.17
rcv1 train 9 71.11 97.05 75.25 10 87.48 97.02 87.48
real-sim 8 80.84 97.53 90.04 10 71.36 97.53 71.36
skin nonskin -17 117.46 90.66 337.21 -15 80.31 90.71 129.74
sonar scale 10 6.27 74.04 6.27 10 0.45 74.04 0.45
splice 3 3.18 80.80 8.23 7 0.97 80.70 1.01
splice scale 6 0.70 72.70 0.85 6 0.40 72.70 0.44
svmguide1 -11 0.81 84.49 17.96 -7 0.40 83.39 0.59
svmguide3 8 1.60 80.05 3.08 10 0.83 79.57 0.83
url combined -8 7,308.55 99.40 12,439.65 -4 7,175.31 97.75 8,691.55
w1a 10 8.76 97.46 8.76 10 2.34 97.50 2.34
w2a 10 6.42 97.38 6.42 10 1.02 97.38 1.02
w3a 10 40.97 97.68 40.97 10 5.17 97.70 5.17
w4a 10 21.65 97.81 21.65 10 2.23 97.81 2.23
w5a 10 28.92 97.87 28.92 10 3.34 97.86 3.34
w6a 9 97.88 98.07 121.84 10 18.57 97.99 18.57
w7a 8 36.50 98.19 54.53 10 11.45 98.20 11.45
w8a 7 62.88 98.37 104.72 10 29.34 98.34 29.34
webspam (trigram) 1 17,397.35 99.63 26,008.73 5 23,469.62 98.83 25,024.18
webspam (unigram) 1 622.97 92.80 1,179.12 7 674.11 92.62 703.39
yahoo-japan 9 978.55 92.69 1,099.30 10 1,501.85 92.68 1,501.85
yahoo-korea 5 4,301.03 87.35 10,690.05 9 5,964.98 87.28 6,039.39



Table V: Comparison of primal Newton method and dual CD method (multi-class data sets).
dual primal

Data set stop log2 C stop time best rate total time stop log2 C stop time best rate total time
acoustic 0 230.37 68.07 370.82 6 193.92 67.84 205.82
acoustic scale 4 422.51 70.53 693.26 3 202.46 69.85 234.97
aloi -3 79,725.37 85.92 not finished 10 163,364.21 86.83 163,364.21
aloi scale -7 55,116.27 41.16 not finished 10 192,875.19 86.81 192,875.19
combined 1 465.78 80.36 736.76 10 565.93 80.14 565.93
combined scale -3 300.03 80.49 781.66 4 304.88 79.59 334.32
connect-4 -2 204.50 75.78 385.94 0 193.89 75.68 232.62
covtype -19 1,216.15 70.56 not finished -14 884.40 61.02 1,885.82
covtype scale 5 7,145.51 71.53 8,867.22 9 3,837.61 71.53 3,872.09
covtype scale01 2 3,866.98 71.53 5,808.50 7 2,712.17 71.49 2,814.53
dna scale 7 8.42 95.00 20.79 10 1.82 95.15 1.82
glass scale 10 1.11 64.49 1.11 10 0.19 64.95 0.19
iris scale 10 0.14 88.00 0.14 10 0.06 88.00 0.06
letter scale 9 154.85 68.09 163.32 10 78.15 68.07 78.15
mnist -18 320.88 91.30 246,983.17 -10 414.50 91.15 648.09
mnist8m -21 40,992.31 86.26 not finished -19 56,154.13 85.72 149,764.99
mnist8m scale -9 156,704.34 86.28 not finished 1 156,364.96 85.72 180,256.27
mnist scale -2 957.83 91.29 5,912.23 8 947.18 91.12 976.39
news20 10 962.99 83.43 962.99 10 738.04 83.43 738.04
news20 scale 10 640.42 84.37 640.42 10 703.26 84.34 703.26
pendigits -6 26.76 93.42 4,377.59 2 10.53 92.94 12.25
poker 10 1,100.21 49.96 1,100.21 10 90.50 49.96 90.50
protein 4 51.35 68.49 201.80 9 43.90 68.51 44.58
satimage scale 8 26.89 83.52 32.61 8 13.08 83.40 13.49
sector 3 13.20 0.98 29.27 3 5.15 0.98 14.07
sector scale 10 1,623.44 92.69 1,623.44 10 2,219.52 92.58 2,219.52
segment scale 8 16.30 92.38 29.02 10 4.49 92.25 4.49
seismic 3 321.56 70.94 473.28 6 322.09 70.57 341.66
seismic scale -3 247.53 70.92 545.83 2 273.39 70.13 313.80
shuttle scale 10 315.67 92.71 315.67 10 119.03 92.47 119.03
svmguide2 10 0.42 83.12 0.42 10 0.23 83.63 0.23
svmguide4 10 3.96 57.67 3.96 10 0.29 50.67 0.29
usps 4 344.92 94.84 3,996.14 9 186.11 94.71 188.75
vehicle scale 10 16.93 78.96 16.93 10 2.05 79.20 2.05
vowel 7 7.82 44.70 10.54 10 2.44 45.08 2.44
vowel scale 10 11.31 45.64 11.31 10 3.37 45.64 3.37
wine scale 10 0.74 99.44 0.74 10 0.28 99.44 0.28



Table VI: Parameter selection under different ε and the effectiveness of the interactive utility. The initial
solution is wk

C̃
when a new ε is used.

from Cmin interactive

Data set ε log2 C̃ best log2 C best CV rate time log2 C̃ best log2 C best CV rate time

australian
1e-02 -43.0 -16.0 68.55 0.04 -43.0 -16.0 68.55 0.04
1e-03 -43.0 -5.0 81.45 0.06 -13.0 -5.0 81.45 0.02
1e-04 -43.0 -3.0 85.94 0.08 0.0 0.0 85.36 0.01

breast-cancer

1e-02 -57.0 -57.0 65.01 0.02 -57.0 -57.0 65.01 0.02
1e-03 -57.0 -57.0 65.01 0.03 -35.0 -35.0 65.01 0.00
1e-04 -57.0 -57.0 65.01 0.03 -32.0 -32.0 65.01 0.00
1e-05 -57.0 -8.0 93.27 0.07 -29.0 -8.0 93.27 0.03
1e-06 -57.0 -2.0 94.44 0.08 -5.0 -1.0 94.44 0.01

cod-rna
1e-02 -38.0 -13.0 87.56 3.88 -38.0 -13.0 87.56 3.88
1e-03 -38.0 -11.0 87.65 4.80 -10.0 -7.0 88.41 0.70
1e-04 -38.0 0.0 93.43 8.01 -4.0 0.0 93.43 1.30

covtype
1e-02 -46.0 -23.0 61.06 105.39 -46.0 -23.0 61.06 105.39
1e-03 -46.0 -12.0 70.51 183.96 -20.0 -13.0 70.21 50.16
1e-04 -46.0 -7.0 75.24 395.74 -10.0 -7.0 75.24 111.87

ijcnn1
1e-02 -18.0 3.0 92.43 6.80 -18.0 3.0 92.43 6.80
1e-03 -18.0 5.0 92.46 7.88 6.0 6.0 92.45 0.59
1e-04 -18.0 4.0 92.45 10.17 9.0 9.0 92.45 0.44

url combined
1e-02 -31.0 -9.0 97.79 2,367.36 -31.0 -9.0 97.79 2,367.36
1e-03 -31.0 -2.0 98.98 6,861.13 -6.0 -4.0 98.72 2,156.13
1e-04 -31.0 2.0 99.46 20,350.75 -1.0 2.0 99.46 13,170.86

Table VII: Parameter selection under different ε and the effectiveness of the interactive utility. The initial
solution is 0 when a new ε is used.

from Cmin interactive

dataset ε log C̃ best logC best CV rate time log C̃ best logC best CV rate time

australian
1e-02 -43.0 -16.0 68.55 0.07 -43.0 -16.0 68.55 0.07
1e-03 -43.0 -5.0 81.45 0.11 -13.0 -5.0 81.45 0.04
1e-04 -43.0 -3.0 85.94 0.17 0.0 1.0 85.36 0.04

breast-cancer

1e-02 -57.0 -57.0 65.01 0.04 -57.0 -57.0 65.01 0.04
1e-03 -57.0 -57.0 65.01 0.05 -35.0 -35.0 65.01 0.00
1e-04 -57.0 -57.0 65.01 0.05 -33.0 -33.0 65.01 0.01
1e-05 -57.0 -8.0 93.27 0.13 -28.0 -8.0 93.27 0.05
1e-06 -57.0 -2.0 94.44 0.15 -5.0 -5.0 94.00 0.02

cod-rna
1e-02 -38.0 -13.0 87.56 9.69 -38.0 -13.0 87.56 9.69
1e-03 -38.0 -11.0 87.65 11.83 -10.0 -10.0 87.68 1.52
1e-04 -38.0 0.0 93.43 21.41 -8.0 0.0 93.43 7.25

covtype
1e-02 -46.0 -23.0 61.06 210.87 -46.0 -23.0 61.06 210.87
1e-03 -46.0 -12.0 70.51 457.31 -20.0 -13.0 70.22 186.39
1e-04 -46.0 -7.0 75.24 990.42 -10.0 -7.0 75.24 463.35

Table VIII: Difference between the initial and optimal function values. L2-loss SVM is used. The approach that is closer to the
optimum is boldfaced.

log2 C primal dual ‖w̄‖2/2 primal dual ‖w̄‖2/2 primal dual ‖w̄‖2/2
madelon ijcnn webspam

−4 5.83e−05 −1.11e+00 8.05e−03 9.89e−01 −1.40e+01 1.50e+01 8.54e+01 −2.59e+02 3.45e+02
0 0.00e+00 −7.80e+00 8.26e−03 1.15e−01 −1.96e+01 1.98e+01 6.35e+02 −1.80e+03 2.43e+03
4 0.00e+00 −5.91e+01 8.28e−03 7.55e−03 −2.02e+01 2.02e+01 3.80e+03 −1.32e+04 1.70e+04
8 0.00e+00 −4.99e+02 8.28e−03 5.06e−04 −2.02e+01 2.02e+01 1.24e+04 −6.78e+04 7.99e+04

rcv1 yahoo-japan news20
−4 1.18e+02 −4.90e+02 6.08e+02 6.87e+01 −1.14e+02 1.83e+02 3.66e+01 −6.45e+01 1.01e+02

0 8.60e+02 −2.47e+03 3.33e+03 1.48e+03 −1.99e+03 3.47e+03 1.81e+02 −7.53e+02 9.34e+02
4 7.01e+03 −1.97e+04 2.67e+04 9.79e+03 −3.56e+04 4.54e+04 7.81e+01 −2.33e+03 2.41e+03
8 2.33e+04 −1.28e+05 1.51e+05 8.34e+03 −1.25e+05 1.33e+05 3.41e+01 −2.74e+03 2.78e+03
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Figure I: CV accuracy and training time using L2-loss SVM with warm start. The two CV curves and the
left y-axis are the CV accuracy in percentage (%). The dashed lines and the right y-axis are the cumulative
training time in the CV procedure in seconds. The vertical line indicates the last C value checked by Algorithm
1.
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Figure II: Objective values versus training time using L2-loss SVM and the best C found by Algorithm 1.
The solid lines correspond to settings without applying warm start, where default initial points in LIBLINEAR
are used. Primal-ws and Dual-ws are primal and dual solvers with warm-start settings, respectively, and the
initial point is obtained by (13) and (14). The horizontal line indicates that the condition (28) with LIBLINEAR’s
default ε = 10−2 has been established.
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Figure III: Training time (in seconds) using L2-loss SVM with/without warm-start techniques. The vertical
line indicates the last C value checked by Algorithm 1. Because the training time quickly increases when C
becomes large, the y-axis is log-scaled.
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