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Parameter Selection for Linear Support Vector
Regression

Jui-Yang Hsia, Chih-Jen Lin

Abstract—In linear support vector regression (SVR), regu-
larization parameter and error sensitivity parameter are used
to avoid overfitting the training data. A proper selection of
parameters is very essential for obtaining a good model, but the
search process may be complicated and time-consuming. In an
earlier work by Chu et al. (2015), an effective parameter-selection
procedure by using warm-start techniques to solve a sequence of
optimization problems has been proposed for linear classification.
We extend their techniques to linear SVR, but address some
new and challenging issues. In particular, linear classification
involves only the regularization parameter but linear SVR has
an extra error sensitivity parameter. We investigate the effective
range of each parameter and the sequence in checking the two
parameters. Based on this work, an effective tool for the selection
of parameters for linear SVR has been available for public use.

I. INTRODUCTION

Support vector regression (SVR) is a linear regression model
commonly used in machine learning and data mining. It
extends least-square regression by considering an ε-insensitive
loss function. Further, to avoid overfitting the training data,
the concept of regularization is usually applied. An SVR thus
solves an optimization problem that involves two parameters:
the regularization parameter (often referred to as C) and the
error sensitivity parameter (often referred to as ε). This work
aims to derive an effective strategy for selecting these two
parameters. Note that we focus on linear SVR rather than
kernel SVR, which involves also kernel parameters.

Parameter selection of a learning method is part of the
broader subject of automated machine learning (autoML). In
general we solve an optimization problem over parameters,
where many global optimization algorithms can be applied
(e.g., [9], [12], [13], [19], [20], [21]). Approaches specific
to parameter selection for machine learning have also been
available (e.g., [14], [22]). Further, methods specially designed
for support vector machines (SVM) have been proposed (e.g.,
[1], [2], [3], [4], [5], [7], [11], [15], [17], [23], [25], [26], [27]).
Most of them focus on classification rather than regression.
Further, methods suitable for linear SVM may not be effective
for kernel SVM, and vice versa. A more detailed review of
past works is given in supplementary materials.

Among all existing studies, we are interested in the work
[2], which applies a warm-start technique for the parameter
selection of linear classification (l2-regularized logistic regres-
sion and l2-loss SVM). Because the only parameter is the reg-
ularization parameter C, their strategy is to sequentially check
cross-validation (CV) accuracy at the following parameters

Cmin, Cmin∆, Cmin∆2, · · · , (1)
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where ∆ > 1 is a given constant to control the increase
of the parameter and C ≤ Cmin is shown to be not useful.
The search procedure stops after the performance cannot be
further improved. Between two consecutive parameters, they
consider a warm-start technique for fast training. Specifically,
the solution of the optimization problem under the current C
is used as the initial solution in solving the next problem with
the parameter ∆C. Although the idea is simple, [2] must solve
some issues in order to finish a now widely used parameter-
selection tool in the popular package LIBLINEAR [6] for
linear classification.

In this work, we aim to extend the procedure in [2] for SVR.
However, because of the difference between classification and
regression, and the extra parameter ε, some modifications must
be made. Further, we must solve the following new challenges.
• We find that deriving a suitable Cmin for regression is more

difficult than classification.
• For classification that involves only one parameter, the

search sequence shown in (1) can be a reasonable choice.
For SVR with two parameters, more options are possible.
For example, we can consider a sequence of ε values, and
for every fixed ε, we run a sequence in (1). Alternatively,
we can consider a sequence of C values first and for every
C we check a sequence of ε values.

• Because the search space of C ∈ (0,∞) is huge, it
is a common practice to consider a sequence in (1) by
exponentially increasing the C value. However, depending
on the data, ε may be in a small interval, so a linear
increase/decrease of the ε value might be more suitable.

In this work, we thoroughly investigate the above issues. Our
final recommended setting is to check a sequence of C values
for every fixed ε value.

We choose to extend the classification work in [2] for
linear SVR rather than consider some existing parameter-
selection works for kernel SVR (e.g., [23], [26]) because of
the following reasons. First, the procedure is simpler because
we directly check a grid of (C, ε) points. Note that kernel
SVR involves more parameters, so a grid search may not
be feasible and more sophisticated approaches are needed.
Second, while checking (C, ε) points may be time-consuming,
by effective warm-start techniques in [2], the overall procedure
is practically viable.

This paper is organized as follows. In the next section,
we introduce the formulations of SVR and discuss how to
obtain an approximate solution of its optimization problem.
In Section III, we discuss the relationship between solutions
of optimization problems and SVR parameters. In particular,
we identify a suitable range of C and ε. In Section IV,
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we discuss the procedure to search parameters and show
details of our implementation. Section V experimentally con-
firms the viability of the proposed approach. Supplementary
materials are available at https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/warm-start/.

Our proposed procedure has been included in the package
LIBLINEAR [6] (after version 2.30) for the parameter selec-
tion of linear regression.

II. SVR OPTIMIZATION PROBLEM

Consider training data (yi,xi) ∈ R×Rn, for i = 1, · · · , l,
where yi ∈ R is the target value and xi ∈ Rn is the
feature vector. We use l to denote the number of training
instances and let n be the number of features in each instance.
Linear SVR [24] finds a model w such that wTxi is close to
the target value yi. It solves the following problem with a
given regularization parameter C > 0 and an error sensitivity
parameter ε ≥ 0.

min
w

f(w;C, ε), where (2)

f(w;C, ε) ≡ 1

2
‖w‖2 + CL(w; ε).

In (2), ‖w‖2/2 is the regularization term and L(w; ε) is the
sum of training losses defined as

L(w; ε) =

{∑l
i=1 max(|wTxi − yi| − ε, 0) L1 loss,∑l
i=1 max(|wTxi − yi| − ε, 0)2 L2 loss.

SVR employs the ε-insensitive loss so that small losses of
some instances are ignored. That is, the loss is zero if |wTxi−
yi| ≤ ε.

The objective function f(w;C, ε) is strongly convex, so the
unique optimal solution exists and we denote it as

wC,ε = arg min
w

f(w;C, ε).

Because L1 loss is not differentiable and L2 loss is dif-
ferentiable but not twice differentiable, different optimization
methods have been proposed for training SVR. A detailed
study is in [8], which considers two types of approaches:
Newton methods for L2-loss SVR and dual coordinate descent
methods for L1- and L2-loss SVR. These methods were
extended from studies for linear classification (e.g, [10], [16]).
For the parameter selection of classification problems, [2]
recommends a Newton method after some careful evaluations.
An important reason is that a Newton method possesses
some advantages under a warm-start setting for training linear
classification problems. Therefore, we follow [2] to consider a
Newton method to solve each SVR problem in the parameter-
selection procedure.

A Newton method iteratively finds Newton directions by
considering the second-order approximation of the objective
function. Details of the Newton method we considered are
in [8], [16]. Because differentiability is required, here we
consider only L2-loss SVR and investigate its parameter
selection.1

1Note that Newton method requires second derivative, but the L2-loss
function is not twice differentiable. We follow [18] to consider the generalized
second derivative.

Because of the nature of numerical computation, in prac-
tice we only obtain an approximate solution w̃C,ε of wC,ε,
returned from the optimization procedure. In an iterative
optimization process a stopping condition must be imposed
for the finite termination. For the Newton method considered
in this work, we assume the stopping condition is that w̃C,ε

satisfies

‖∇f(w̃C,ε;C, ε)‖ ≤ τ‖∇f(0;C, ε)‖, (3)

where τ ∈ (0, 1) is the stopping tolerance. Clearly, (3) is
related to the optimal condition ∇f(wC,ε;C, ε) = 0, but we
further consider a relative setting to compare with the gradient
at the zero point, which is a common initial point of the
optimization procedure. The condition (3) plays a role in the
parameter-selection procedure, where details are in Section IV.

A. Warm-start Techniques for Parameter Selection

While many parameter-selection strategies are available,
the approach in [2] is a conservative but reliable setting
of checking the cross validation (CV) performance under
different parameter values. The training set is randomly split
into several folds. Each time one fold is used for validation,
while other folds are considered for training. Therefore, many
SVR optimization problems must be solved.

To reduce the running time, [2] considers a warm-start strat-
egy to solve closely related optimization problems. We extend
their setting for linear SVR. Suppose wC1,ε1 is the optimal
solution under C = C1 and ε = ε1. If (C1, ε1) is slightly
changed to (C2, ε2), we use wC1,ε1 as the initial solution
for solving the new optimization problem. The idea behind
such a warm-start strategy is as follows. For optimization
techniques such as Newton methods, they iteratively generate
a sequence {wk}∞k=0 converging to the optimum. Because
a small change of parameters may not cause a significant
change of the optimization problem, the optimal solution of
the original problem can be a good starting point for the new
problem. Then the number of optimization iterations may be
significantly reduced in comparison with that without warm-
start (e.g, using 0 as the initial solution).

We divide the parameter-selection problem for SVR into
two parts. One is the search range of each parameter. The
other is the design of the search procedure. We study the first
in Section III and the second in Section IV.

III. RANGE OF PARAMETERS

We check the range of a parameter by assuming that the
other is fixed. To simplify the notification, if ε is fixed, we
denote

wC = wC,ε, w̃C = w̃C,ε,
L(w) = L(w; ε), f(w;C) = f(w;C, ε).

Similarly, if C is fixed, we have

wε = wC,ε, w̃ε = w̃C,ε, f(w; ε) = f(w;C, ε).

For a suitable parameter range we hope that first parameters
achieving the best performance are within it and second the
range should be as small as possible. We follow [2] to identify

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/warm-start/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/warm-start/
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parameters that should not be considered. For example, if a
parameter setting leads to a model that does not learn enough
information from the training data, then underfitting occurs
and such parameters should not be used.

A. Zero Vector is a Trivial Model

We begin with showing that the zero vector leads to a model
that may not learn enough information from the training data.
First, because

f(wC,ε;C, ε) ≤ f(0;C, ε) and ‖wC,ε‖ ≥ ‖0‖,

we have

L(wC,ε, ε) ≤ L(0, ε).

The larger training loss indicates that 0 may not learn more
from the training data than any wC,ε. Second, the following
theorem shows that the learnability of wC deteriorates as C
approaches zero and wC eventually goes to the zero point.

Theorem 1. If C1 > C0, then

‖wC1
‖ ≥ ‖wC0

‖ and L(wC1
) ≤ L(wC0

).

Further,

lim
C→0

wC = 0.

Note that proofs of all theorems are in the supplementary
materials. From the discussion, we can treat 0 as a trivial
model that underfits the training data. For any with L(w) ≈
L(0), w may have not learned enough information from the
training data.

B. Parameter C

We fix ε and discuss the upper and lower bounds for
parameter C.

1) Lower Bound of C: From the discussion in Section
III-A, we check under which C values the training loss L(wC)
is close to L(0) by proving the following theorem.

Theorem 2. Consider L2 loss. For 0 ≤ δ1 < 1, we have

L(wC) ≥ (1− δ1)× L(0) ∀C ≤ Cmin,

where Cmin is defined as

Cmin =

{
δ21L(0)

8(
∑l

i=1 |yi|)2(maxi ‖xi‖)2
if L(0) > 0, 2

∞ if L(0) = 0.
(4)

Therefore, by choosing a δ1 close to 0, Cmin can be a lower
bound for the parameter C.

2We have that L(0)/0 = ∞ if this occurs.

2) Upper Bound of C: We first check properties of {wC}
when C is large. Let W∞ be the set of points that attain the
minimum of L(w).

W∞ ≡ {w | L(w) = inf
w′
L(w′)}.

For classification problems, [2] has discussed the convergence
property of {wC} as C → ∞. We extend their results here
for regression.

Theorem 3. Consider any non-negative and convex loss
function. If W∞ 6= ∅, then

lim
C→∞

wC = w∞, where w∞ = arg min
w∈W∞

‖w‖2. (5)

If L2 loss is used, then W∞ 6= ∅.

Because w∞ is a model without using regularization, over-
fitting tends to occur and the performance is often not the
best. However, it is difficult to identify a Cmax so that if
C ≥ Cmax, the model is sufficiently close to w∞. We leave
more investigations in Section IV.

C. Parameter ε

We now fix C and discuss upper and lower bounds for
parameter ε.

1) Lower Bound of ε: Because ε ≥ 0, a trivial lower bound
of ε is ε = 0. We argue that this is a meaningful lower bound
because [8] has shown that ε = 0 often leads to a good model.
That is, for some data sets the ε-insensitive setting is not
needed and regularized least-square regression is as effective
as SVR.

2) Upper Bound of ε: From the definition of ε-insensitive
loss functions, if ε is large so that for most data the loss is
zero, then the model tends to underfit the training data. Thus
an obvious upper bound is

εmax = max
i
|yi|.

Under this εmax, f(0) = 0 implies that w = 0 is an optimal
solution of (2) and insufficient information has been learned.

IV. THE SEARCH PROCEDURE

After studying the range of each parameter, we must find
an effective search procedure. Under a grid setting, a two-
level loop sweeps C (or ε) first, and at the inner level, we go
through values of the other parameter. Then two issues must
be addressed.
• The parameter to be used for the outer loop.
• The search sequence of each parameter.
These two issues are complicated, so our discussion goes from
decisions that are easily made to those that are less certain.

We start by checking the search sequence of the parameter
C. For the parameter selection of linear classification, an
exponential increase of the regularization parameter C has
been commonly considered; see the sequence in (1). The
reason is that C ∈ (0,∞) is in a rather large range and
we need the exponential increase of the parameter to cover
the search space. The same setting should be applied for
regression because we still have C ∈ (0,∞). In addition,
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we follow (1) to start from Cmin because of two reasons.
First, for both classification and regression, Cmin has been
specifically derived; see [2] and (4). In contrast, we do not
have a clear way to calculate an upper bound and must rely
on techniques discussed later in this section. Second, if we
consider a decreasing sequence, solving the first optimization
problem may be time-consuming. The reason is that under a
large C, the model tries to better fit the training data and the
optimization problem is known to be more difficult.3 Based on
these reasons, regardless of whether C is used in the outer or
the inner level of the loop, we always consider an increasing
sequence of C values as in (1).

We now discuss the search sequence of the other parameter
ε. An exponential sequence like the setting for C can be
considered. However, it should be a decreasing one starting
at ε = εmax. The reason is that because 0 is the solution when
ε = εmax, the optimization problem is easier when ε is closed
to εmax. Recall that a similar reason leads us to begin the search
of C at Cmin.

Instead of an exponential sequence, we argue that the
sequence from a linear segmentation of [0, εmax] may be more
suitable for the parameter ε. An important difference from C
is that ε is in a bounded interval [εmin, εmax], where εmin = 0
and εmax <∞. Further, while both lower and upper bounds of
C tend to be values not leading to a good model, for ε, [8] has
pointed out that the model of using ε = 0 is often competitive.
We also have

Theorem 4.
lim
ε→0

wε = w0.

If an exponentially decreasing sequence starting from εmax
is considered, many problems with ε ≈ 0 are checked, but
Theorem 4 shows that their resulting models are similar. In
contrast, a linear sequence can clearly avoid this situation.
In Section V-A, we conduct experiments to compare the two
settings (linear and exponential) for the search sequence of ε.

The remaining issue is when to stop increasing the parame-
ter C in the search procedure because Cmax is the only bound
that cannot be explicitly obtained in Section III. We extend
the setting in [2] by following Theorem 3, which states that
{wC}, C → ∞ converge to a point w∞. Their idea is to
terminate the selection procedure if the approximate solutions
of tstop consecutive optimization problems are the same. That
is, if

w̃C = w̃∆C = w̃∆2C = w̃∆3C · · · = w̃∆tstopC , (6)

then the search process terminates at C. It is easy to check (6)
by the stopping condition (3) of the optimization procedure4:

‖∇f(w̃C ; ∆tC)‖ ≤ τ‖∇f(0; ∆tC)‖, t = 1, 2, · · · , tstop.
(7)

In other words, an approximate solution w̃C satisfies the above
stopping condition with t = 0, but we check if it is also the

3In fact, some past works think an efficient way to solve a single SVM under
a large C is through a warm-start setting on the problems corresponding to
an increasing sequence of smaller C values; see, for example, the software
BSVM https://www.csie.ntu.edu.tw/∼cjlin/bsvm/.

4We explain in supplementary materials why on the right-hand side of (7),
the 0 point is always used.

returned solution of the next several problems without any
optimization iteration. We choose tstop = 5 for experiments
in Section V though more discussion on its selection is in
supplementary materials.

V. EXPERIMENTS

We conduct experiments on some regression sets available
at https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
For some data sets, a scaled version is provided at the same
site by linearly scaling each attribute to [−1, 1] or [0, 1]. We
named the scaled version with an extension “-scale.” Our
search procedure aims to find a model achieving the best
five-fold CV result on the validation MSE (Mean Square
Error). Because of space limit, we present only results on
some larger sets, while leave detailed experimental settings
(including data statistics) and complete experimental results
in supplementary materials.

A. Exponential or Linear Search Sequence for the ε Parameter

In Section IV, we discuss the issue of using an exponential
or a linear sequence of ε values in the search procedure. We
conduct a comparison by considering C values in the following
set

{Cmin, Cmin∆, Cmin∆2, · · · , Cmax} (8)

and ε values in either a linear- or an exponential-spaced
sequence:

{0,�, 2�, · · · , εmax} or {2−30, 2−30∆, 2−30∆2, · · · , εmax},
(9)

where
Cmax = 250, � =

εmax

20
and ∆ = 2. (10)

In Figure 1, for each data set we show{
(log2 C, ε) or
(log2 C, log2 ε)

versus log2(CV MSE)

depending on the sequence for ε. We observe that if an
exponential sequence is used, then CV MSE is almost the
same in the entire figure. The reason is that from Theorem
4, after ε is smaller than a certain value, CV MSE is similar.
For the purpose of exploring different CV MSE values, we
conclude that a linear sequence should be more suitable in
our parameter selection procedure.

B. Evaluation of Various Implementations for the Search
Procedure

We compare cross validation MSE of the following settings:
• “Full and independent” (Baseline): By using (C, ε) values in

(8) and (9), we solve all linear SVR problems independently.
For each SVR problem 0 is the initial point and the stopping
condition is (3).
This setting aims to show that if without any techniques
to reduce the search space and without the warm start
implementation, what the resulting MSE is. We compare
with this baseline setting to see if our procedures trade the
performance for efficiency.

https://www.csie.ntu.edu.tw/~cjlin/bsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: Cross validation MSE (log scaled) by different search
sequences of ε. Left: linear. Right: exponential.

• (ε, C): The warm-start setting is considered. For the search
procedure, ε is in the outer loop and C is in the inner loop.
The search range of ε is shown in (9), while for C, we
evaluate the following settings:
– The termination criterion (7) extended from [2] is applied.

See details in Section IV.
– “No termination criterion”: We run the full grid up to the

large Cmax specified in (10). Thus the number of checked
(ε, C) points is the same as “Full and independent.” They
differ only in whether the warm-start strategy is applied
or not.

• (C, ε): We apply the warm-start setting, where for the search
procedure, C is in the outer loop and ε is in the inner loop.
For the termination of the C sequence, the condition (7)
is less suitable here. Because C is in the outer loop, to
check (7), all models under different ε values must be stored.
Therefore, we run the full grid up to the specified Cmax in
(10). The number of checked (C, ε) points is thus the same
as that of the “Full and independent” setting and that of
“No termination criterion” in the (ε, C) setting.
To see if any MSE change occurs after applying the warm

start technique, in Table I we present the following ratio:

Best CV MSE by applying warm start
Best CV MSE by “Full and independent”

. (11)

We observe that all ratios are close to one, indicating that
the CV MSE is close to the baseline setting of independently
running a full grid without warm start. Note that except the
use of (7) to early stop the C sequence in the (ε, C) setting, all
others go over the same full grid of parameters as the baseline
“Full and independent.” For them because the same set of SVR
problems is solved, theoretically the ratio should be exactly
one. However, with approximate solutions satisfying only (3),
the resulting models are slightly different. From ratios all close

Table I: An MSE comparison with the baseline setting of
running the full grid without warm start; see the ratio defined
in (11). (C, ε) and (ε, C) indicate that C and ε are used in
the outer loop of the parameter grid, respectively. YPMSD is
the abbreviation of YearPredictionMSD. Ratios different from
one are bold-faced.

Data set (ε, C) (C, ε)
Criterion

in (7)
No

criterion
No

criterion
abalone 1.00 1.00 1.00
abalone-scale 1.00 1.00 1.00
cadata 1.09 1.09 1.01
cpusmall 1.00 1.00 1.03
cpusmall-scale 1.00 1.00 1.00
E2006-train 0.99 0.99 1.00
housing 1.04 1.04 1.00
housing-scale 1.00 1.00 1.00
log1p-E2006-train 1.00 1.00 1.00
mg 1.00 1.00 1.00
mg-scale 1.00 1.00 1.00
space-ga 1.00 1.00 1.00
space-ga-scale 1.00 1.00 1.00
YPMSD 1.02 1.02 0.99

to one in Table I we conclude that equally good approximate
solutions of SVR problems are obtained after applying warm
start.

More importantly, from Table I the setting via (7) without
considering all grid points also has ratios close to one, indicat-
ing that it has covered needed parameters without sacrificing
the performance.

C. Running-time Reduction of Warm-start Methods

To check the effectiveness of warm-start methods we present
in Table II the following ratio.5

Running time by applying warm start
Running time by “Full and independent”

. (12)

A smaller ratio indicates a better time reduction by using warm
start. From Table II, we have the following observations.
• All the values in Table II are much smaller than one. This

result shows that the warm-start techniques can significantly
reduce the time required to search the parameters.

• For the (ε, C) setting, the running time with/without the
early termination of the C sequence is almost the same.
We give the following explanation. The criterion (7) checks
the stopping condition of several consecutive optimization
problems. When (7) holds, the corresponding w̃C may be
close enough to w∞ by Theorem 3 and the condition (3)
may hold ever since:

‖∇f(w̃Cstop ;C)‖ ≤ τ‖∇f(0;C)‖, ∀C ≥ Cstop, (13)

where Cstop is the value when (7) is satisfied. Therefore,
if we check more C values all the way up to the specified
Cmax, at each C the optimization method terminates without
running any iteration. In this situation, the early termination
via (7) is not needed. However, in theory Cstop may not
exist to have (13) because w̃Cstop is only an approximate
rather than the optimal solution. Thus it is still possible
that the optimization method takes time at each C and

5Running time is estimated by the number of CG steps in the Newton
method for training SVR. See details in supplementary materials.
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Table II: Ratio defined in (12) to show the time reduction of
using warm start.

Data set (ε, C) (C, ε)
Criterion

in (7)
No

criterion
No

criterion
abalone 0.12 0.12 0.54
abalone-scale 0.11 0.11 0.50
cadata 0.06 0.06 0.67
cpusmall 0.06 0.06 0.62
cpusmall-scale 0.10 0.10 0.69
E2006-train 0.14 0.14 0.35
housing 0.07 0.07 0.66
housing-scale 0.11 0.11 0.59
log1p-E2006-train 0.08 0.08 0.62
mg 0.13 0.13 0.61
mg-scale 0.13 0.13 0.61
space-ga 0.08 0.08 0.73
space-ga-scale 0.13 0.13 0.62
YPMSD 0.04 0.04 0.35

we expensively run the procedure all the way up to Cmax.
Further, the selection of Cmax is a tricky issue; in our
experiment we choose 250 in (10) without a good reason.
Therefore, we can say that (7) is a relaxed condition of
(13) to avoid the huge efforts of possibly running up to an
extremely large Cmax.

• Between (C, ε) and (ε, C), we observe that (C, ε) costs
more. It seems that warm start is less effective when C
is fixed and ε is slightly changed. A reason might be that in
our experiments, the number of SVR problems per ε value is
often larger than that per C value. Then the time saving by
applying warm start for the (C, ε) strategy is less dramatic.
Note that in (9) we split [εmin, εmax] to 20 intervals, but with
a small Cmin and a large Cmax, the number of C values in
[Cmin, Cmax] tends to be larger. More detailed discussion is
provided in supplementary materials.

D. Comparison with Other Parameter Selection Methods
We have compared our proposed method with two existing

techniques for parameter selection: simulated annealing and
particle swarm optimization, which details are in supplemen-
tary materials. We find that these alternative approaches, while
more sophisticated, are often as competitive. However, they are
not as robust as our search on a grid of parameters. In some
situations, they lead to parameters with much worse CV MSE.

VI. RECOMMENDED PROCEDURE AND CONCLUSIONS

We have shown that the termination criterion (7) works
effectively in practice. Because this criterion is applicable
when C is in the inner loop and our experiments show that
the (ε, C) setting takes less running time, our recommended
setting is to have ε in the outer loop and C in the inner, and
the criterion (7) is imposed. A detailed algorithm is given in
supplementary materials.

We list technical insights from this development and future
research issues in supplementary materials. In summary, we
have developed an effective parameter-selection procedure
based on the warm-start technique for linear SVR.
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