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A LINE SEARCH IN BUNDLE CDN
In this section, we explain a line search trick that can be applied in
Naive CDN but cannot be applied in Bundle CDN. In addition, we
demonstrate the impact of the line search trick.

In (13), the computational cost mainly comes from evaluating
∆j (β

td) ≡ L(w + βtde j ) − L(w),

which costsO(nnzj ) and nnzj is the number of non-zeros in feature
j. In CDN, for both SVM and LR, an upper bound of ∆j (βtd) is
calculated during the training process. The cost of computing this
upper bound ∆̄j (β

td) is just O(1). The details can be found in Eq.
(40) for SVM and Eq. (49) - (54) for LR in [2]. During the line search
process, before computing ∆j (β

td), CDN first checks if ∆̄j (βtd)
satisfies (13). If satisfied, then we can skip the entire line search
process, making the cost of line search drop from O(nnzj ) to O(1).
(If not satisfied, then we still need to run the standard line search.)

This trick, designed for one-variable problems, may not be appli-
cable for multi-variable problems like (16). Therefore, if we check
the code published by [1],1 the implementation of this trick was
commented out. They also remove the trick in the single-thread
CDN to measure the speedup, meaning that they are comparing
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Figure I: Comparison between Naive CDN (NCDN), NCDN
without the line-search trick (denoted as NCDN* in the fig-
ure), and Bundle CDN (BCDN) with the bundle size 29,500.
16 threads are used for all methods. The data set used is
kdd2010-a.

with a slower version of CDN. However, we believe in practice peo-
ple would be more interested in the speedup against the original
version of CDN. In Figure I, we compare the following setting on
kdd2010-a.

• Naive CDN
• Naive CDN without the trick
• Bundle CDN with the best bundle size

The experiment shows that the trick indeed plays an important role
for this data set.

REFERENCES
[1] Yatao Bian, Xiong Li, Mingqi Cao, and Yuncai Liu. 2013. Bundle CDN: a highly

parallelized approach for large-scale l1-regularized logistic regression. In Proceed-
ings of European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML/ PKDD).

[2] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
2008. LIBLINEAR: a library for large linear classification. Journal of Machine
Learning Research 9 (2008), 1871–1874. http://www.csie.ntu.edu.tw/~cjlin/papers/
liblinear.pdf


