Linear Classifier API ===================== Train and Predict ^^^^^^^^^^^^^^^^^ Linear methods are methods based on `LibLinear `_. The simplest usage is:: model = linear.train_1vsrest(train_y, train_x, options) predict = linear.predict_values(model, test_x) .. currentmodule:: libmultilabel.linear .. autofunction:: train_1vsrest .. autofunction:: train_thresholding .. autofunction:: train_cost_sensitive .. autofunction:: train_cost_sensitive_micro .. autofunction:: train_binary_and_multiclass .. autofunction:: train_tree .. autofunction:: predict_values .. autofunction:: get_topk_labels .. autofunction:: get_positive_labels .. autoclass:: FlatModel :members: .. autoclass:: TreeModel :members: Load Dataset ^^^^^^^^^^^^ .. autofunction:: load_dataset Preprocessor ^^^^^^^^^^^^ .. autoclass:: Preprocessor :members: :special-members: __init__ Load and Save Pipeline ^^^^^^^^^^^^^^^^^^^^^^ .. autofunction:: save_pipeline .. autofunction:: load_pipeline Metrics ^^^^^^^ Metrics are specified by their names in ``compute_metrics`` and ``get_metrics``. The possible metric names are: * ``'P@K'``, where ``K`` is a positive integer * ``'R@K'``, where ``K`` is a positive integer * ``'RP@K'``, where ``K`` is a positive integer * ``'NDCG@K'``, where ``K`` is a positive integer * ``'Macro-F1'`` * ``'Micro-F1'`` Their definitions are given in the `implementation document `_. .. autofunction:: compute_metrics .. autofunction:: get_metrics .. autoclass:: MetricCollection :members: .. autofunction:: tabulate_metrics Grid Search with Sklearn Estimators ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: MultiLabelEstimator :members: .. automethod:: __init__ .. automethod:: fit .. automethod:: predict .. automethod:: score .. autoclass:: GridSearchCV :members: .. automethod:: __init__