Linear Classifier API
=====================
Train and Predict
^^^^^^^^^^^^^^^^^
Linear methods are methods based on
`LibLinear `_.
The simplest usage is::
model = linear.train_1vsrest(train_y, train_x, options)
predict = linear.predict_values(model, test_x)
.. currentmodule:: libmultilabel.linear
.. autofunction:: train_1vsrest
.. autofunction:: train_thresholding
.. autofunction:: train_cost_sensitive
.. autofunction:: train_cost_sensitive_micro
.. autofunction:: train_binary_and_multiclass
.. autofunction:: train_tree
.. autofunction:: predict_values
.. autofunction:: get_topk_labels
.. autofunction:: get_positive_labels
.. autoclass:: FlatModel
:members:
.. autoclass:: TreeModel
:members:
Load Dataset
^^^^^^^^^^^^
.. autofunction:: load_dataset
Preprocessor
^^^^^^^^^^^^
.. autoclass:: Preprocessor
:members:
:special-members: __init__
Load and Save Pipeline
^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: save_pipeline
.. autofunction:: load_pipeline
Metrics
^^^^^^^
Metrics are specified by their names in ``compute_metrics`` and ``get_metrics``.
The possible metric names are:
* ``'P@K'``, where ``K`` is a positive integer
* ``'R@K'``, where ``K`` is a positive integer
* ``'RP@K'``, where ``K`` is a positive integer
* ``'NDCG@K'``, where ``K`` is a positive integer
* ``'Macro-F1'``
* ``'Micro-F1'``
Their definitions are given in the `implementation document `_.
.. autofunction:: compute_metrics
.. autofunction:: get_metrics
.. autoclass:: MetricCollection
:members:
.. autofunction:: tabulate_metrics
Grid Search with Sklearn Estimators
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: MultiLabelEstimator
:members:
.. automethod:: __init__
.. automethod:: fit
.. automethod:: predict
.. automethod:: score
.. autoclass:: GridSearchCV
:members:
.. automethod:: __init__