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This set of slides gives a real example of using dual
problems

@ Basic concepts: SVM and kernels
@ SVM primal/dual problems

@ Logistic Regression

@ Loss Functions
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@ Basic concepts: SVM and kernels
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_ Basic concepts: SVM and kernels
Data Classification

@ Given training data in different classes (labels
known)

Predict test data (labels unknown)
@ Training and testing
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_ Basic concepts: SVM and kernels
Support Vector Classification

@ Training vectors : x;,i =1,...

@ Feature vectors. For example,
A patient = [height, weight, ...]"

@ Consider a simple case with two classes:
Define an indicator vector y

o 1 ifxjinclass1
Yi=y 1 if x; in class 2

@ A hyperplane which separates all data
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@ A separating hyperplane: w'x 4+ b =0

(WTX,')—f—bZ]. If_)/,:].
(wix)+b< -1 ify,=-1

@ Decision function f(x) = sgn(w'x + b), x: test
data

Many possible choices of w and b
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_ Basic conce pts: SVM and kernels
Maximal Margin

@ Distance between w'x +b =1 and —1:
2/|w| =2/VwTw

@ A quadratic programming problem (Boser et al.,
1992)

_ 1
min —WTW
w,b

subject to  y;(w'x; + b) > 1,
i=1,....1.
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_ Basic conce pts: SVM and kernels
Data May Not Be Linearly Separable

@ An example:

@ Allow training errors
@ Higher dimensional (' maybe infinite ) feature space

d(x) = [¢1(x), Po(x),...]".
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N 52ci concepts: SVM and kernel

e Standard SVM (Boser et al., 1992; Cortes and
Vapnik, 1995)

/
: 1 -
min EW W+Czl:§,-

W?b“,g

subject to  yi(w'(x;) +b) >1—¢&;,
5,’20, I:17,/

e Example: x € R3 ¢(x) € RY

o(x) = [1, V2x1,V2x0, V23, X2,

2 2 T
Xy, X5, \/Exlxz, \/§X1X3, \/§X2X3]
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_ Basic concepts: SVM and kernels
Finding the Decision Function

@ w: maybe infinite variables
@ The dual problem: finite number of variables

1
min EaTQa—eTa
subjectto 0< ;< C,i=1,...,/
y a =0,

where Q; = yiy;o(xi)"é(x;) and e = [1,...,1]7
@ At optimum
2= Zi:l @;yip(x;)
@ A finite problem: #variables = #training data
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_ Basic conce pts: SVM and kernels
Kernel Tricks

o Q; = yiyid(x;)Td(x;) needs a closed form
e Example: x; € R®, ¢(x;) € RY®

¢(xf) = [17 \/E(Xi)lv \/§(X,')2, \/§(X/)3, (X/)%v
(x1)3, (313, V2(x:)1(x:)2, V2(xi)1(xi)3, V2(x:)2(xi)3] T

Then ¢(x;)To(x;) = (1 + x] x;)>.
o Kernel: K(x,y) = ¢(x)T¢(y); common kernels:

e‘””"l""f”i (Radial Basis Function)

(x]xj/a+ b)* (Polynomial kernel)
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Basic conce pts: SVM and kernels

Can be inner product in infinite dimensional space
Assume x € R! and v > 0.

e X=Xl — g=v(xi—x)? _ gm v+ 2yxixg—yx}

e (1 27XIXJ 4 (27XIXJ)2 4 (27X/XJ)3

—e —xF—yx? 1 1+\/7 \/TJ"‘ (2’7 (27
(27)3 (2
B A FER oot

where

.
o(x) = e [1, \/?x, (2;!)2x2, (2;!)3)(3’ . ]
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_ Basic conce pts: SVM and kernels
Decision function

@ At optimum

w = Zi:l a;yio(x;)
@ Decision function
w'o(x)+ b
/
— Z Oé,'y,'gb(X,')TQS(X) + b
i=1
/

= > aiyiK(xi,x)+ b

i=1
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_ Basic concepts: SVM and kernels
Support Vectors: More Important Data

Only ¢(x;) of aj > 0 used = support vectors
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Outline

@ SVM primal/dual problems
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Deriving the Dual

@ Consider the problem without &,

. 1
min —WTW
w,b 2

subject to  yi(w g(x;))+b)>1,i=1,...,1.
@ |ts dual
mn -a'Qa—e'«

(0%
subject to 0 < «;, i=1,...,1,




Lagrangian Dual

mexyip Hw: b))

where

L(w,b.a) = 3[wl? ~ 3" 0 ((w o) + b) ~ 1)

i=1
Strong duality

min Primal = rggg)((rml? L(w, b, at))
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N e e
e Simplify the dual. When « is fixed,

mil? L(w, b, o) =

—00 it 325 iy #
miniwTw — S0 ailyi(wTo(x) — 1] if S iy =

w

o If 25:1 ajy; # 0,

decrease /
—b) iy
i=1

in L(w, b, &) to —o0
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o If Zle a;y; = 0, optimum of the strictly convex

lwTw — 31 aiyi(wT¢(x;) — 1] happens when

0
6—WL(W, b, a) =0.

@ Thus,
/
w = ayid(x;).
i—1
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@ Note that
| /
wiw — (Z&iyi(b(x,) (Z@j)ﬁ(ﬁ(Xj))
. j=1
— Zozajy,ngﬁ(X/)T (x;)

@ The dual is

/
S ai— 3 aiagyiyid(xi) To(x;) if i iy =0
max 4 i=1 i
(8 7

—o0 if S aiy #0
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N R 1 o s
o Lagrangian dual: maxaso(ming s L(w, b, )
@ —oo definitely not maximum of the dual
Dual optimal solution not happen when

/
Z Q;yi 7”é 0
i=1

@ Dual simplified to
I

max Z&, — %ZZ@ QJYI)/]Qb(X/) ( )

ER!
* i=1 j=1

subject to  y'a =0,

a;>0i=1,...,1
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@ Our problems may be infinite dimensional
@ Can still use Lagrangian duality
See a rigorous discussion in Lin (2001)
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Outline

@ Logistic Regression

Chih-Jen Lin (National Taiwan Univ.)

22 / 40



Logistic Regression

@ For a label-feature pair (y,x), assume the
probability model

1

plylx) = 14 ewx

@ w is the parameter to be decided

@ Assume
(yi,x;),i=1,...,1

are training instances
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Logistic Regression (Cont'd)

@ Logistic regression finds w by maximizing the
following likelihood

/
max [ [ p(vilx;). (1)
i=1
@ Regularized logistic regression

/
1
mMiIn 5WTW +C 2_1: log <1 + e—y;wa,-) . (2)

C: regularization parameter decided by users
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@ Loss Functions
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@ We derive SVM from the viewpoint of maximal
margin

@ We derive logistic regression from minimizing the
negative log likelihood

@ They can both be considered from the viewpoint of
regularized linear classification
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Minimizing Training Errors

@ Basically a classification method starts with
minimizing the training errors

min  (training errors)
model

@ That is, all or most training data with labels should
be correctly classified by our model

@ A model can be a decision tree, a support vector
machine, a neural networks, or other types
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Minimizing Training Errors (Cont'd)

@ We consider the model to be a vector w
@ That is, the decision function is

sgn(w " x)
e For any data, x, the predicted label is

1 ifw’x>0
—1 otherwise
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Minimizing Training Errors (Cont'd)

@ [ he two-dimensional situation

wix=0

@ This seems to be quite restricted, but practically x
is in @ much higher dimensional space
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Minimizing Training Errors (Cont'd)

@ To characterize the training error, we need a loss
function &(w; x, y) for each instance (x, y)

@ ldeally we should use 0-1 training loss:

1 ifyw'x <0,

§(w; x,y) —{

0 otherwise
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Minimizing Training Errors (Cont'd)

@ However, this function is discontinuous. The
optimization problem becomes difficult

§(wix,y)
|

—yw'x

@ We need continuous approximations
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Loss Functions

@ Some commonly used ones:

&L1(w; x,y) = max(0,1 — wax), (3)
Ea(w; x, y) = max(0,1 — yWTx)z, (4)
Er(w; x, y) = log(1 + e_yWT"). (5)

@ SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(3)-(4)

@ Logistic regression (LR): (5)
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Loss Functions (Cont'd)

E(w; x,y)
L2

/fLR
A

Their performance is usually similar
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Common Loss Functions (Cont'd)

@ However, minimizing training losses may not give a
good model for future prediction

e Overfitting occurs
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Overfitting

@ See the illustration in the next slide
@ For classification,
You can easily achieve 100% training accuracy
@ This is useless
@ When training a data set, we should
Avoid underfitting: small training error
Avoid overfitting: small testing error
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® and A: training; () and A: testing
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Regularization

@ To minimize the training error we manipulate the w
vector so that it fits the data

@ To avoid overfitting we need a way to make w's
values less extreme,

@ One idea is to make w values closer to zero
@ We can add, for example,

WTW

2

or [[w}

to the function that is minimized
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Regularized Linear Classification

@ Training data {y;, x;},x; € R"i=1,...,1, yi=+1
o [ # of data, n: # of features

WTW

I
mMi,nf(w), flw) = 5 +CZ§(W;X,',)//)
i=1

e w’w/2: regularization term (we have no time to
talk about L1 regularization here)

e &(w; x,y): loss function: we hope yw'x > 0
e C: regularization parameter
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Discussion

@ You can use |w||; regularization. This is now
popular because of sparsity (i.e., some w's
components are zeros

But do we still have maximal margin interpretation?

@ For SVM, can we have an interpretation like
maximum likelihood of logistic regression?

@ For regularized logistic regression, can we have an
interpretation of maximal margin?
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