Outline

This set of slides gives a real example of using dual problems

- Basic concepts: SVM and kernels
- SVM primal/dual problems
- Logistic Regression
- Loss Functions

Outline

- Basic concepts: SVM and kernels
- SVM primal/dual problems
- Logistic Regression
- Loss Functions

Data Classification

- Given training data in different classes (labels known)
 - Predict test data (labels unknown)
- Training and testing

Support Vector Classification

- Training vectors : x_i , i = 1, ..., I
- Feature vectors. For example, A patient = $[height, weight, ...]^T$
- Consider a simple case with two classes:
 Define an indicator vector y

$$y_i = \begin{cases} 1 & \text{if } \mathbf{x}_i \text{ in class } 1\\ -1 & \text{if } \mathbf{x}_i \text{ in class } 2 \end{cases}$$

• A hyperplane which separates all data

• A separating hyperplane: $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$

$$(\boldsymbol{w}^T \boldsymbol{x}_i) + b \ge 1$$
 if $y_i = 1$
 $(\boldsymbol{w}^T \boldsymbol{x}_i) + b \le -1$ if $y_i = -1$

• Decision function $f(x) = \operatorname{sgn}(w^T x + b)$, x: test data

Many possible choices of w and b

Maximal Margin

• Distance between $\mathbf{w}^T \mathbf{x} + b = 1$ and -1:

$$2/\|\boldsymbol{w}\| = 2/\sqrt{\boldsymbol{w}^T \boldsymbol{w}}$$

 A quadratic programming problem (Boser et al., 1992)

$$\begin{aligned} \min_{\substack{\boldsymbol{w},b}} & \frac{1}{2}\boldsymbol{w}^T\boldsymbol{w} \\ \text{subject to} & y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b) \geq 1, \\ & i=1,\ldots,I. \end{aligned}$$

Data May Not Be Linearly Separable

• An example:

- Allow training errors
- Higher dimensional (maybe infinite) feature space

$$\phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots]^T.$$

 Standard SVM (Boser et al., 1992; Cortes and Vapnik, 1995)

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{I} \xi_i$$

subject to
$$y_i (\boldsymbol{w}^T \phi(\boldsymbol{x}_i) + b) \ge 1 - \xi_i,$$

$$\xi_i \ge 0, \ i = 1, \dots, I.$$

• Example: $\mathbf{x} \in R^3, \phi(\mathbf{x}) \in R^{10}$

$$\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, x_1^2, x_2^2, x_3^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3]^T$$

Finding the Decision Function

- w: maybe infinite variables
- The dual problem: finite number of variables

$$\begin{aligned} \min_{\boldsymbol{\alpha}} & & \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \boldsymbol{e}^T \boldsymbol{\alpha} \\ \text{subject to} & & 0 \leq \alpha_i \leq C, i = 1, \dots, I \\ & & \boldsymbol{y}^T \boldsymbol{\alpha} = 0, \end{aligned}$$

where
$$Q_{ij} = y_i y_j \phi(oldsymbol{x}_i)^T \phi(oldsymbol{x}_j)$$
 and $oldsymbol{e} = [1, \dots, 1]^T$

At optimum

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i \mathbf{y}_i \phi(\mathbf{x}_i)$$

• A finite problem: #variables = #training data

Kernel Tricks

- $Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j)$ needs a closed form
- Example: $\mathbf{x}_i \in R^3, \phi(\mathbf{x}_i) \in R^{10}$

$$\phi(\mathbf{x}_i) = [1, \sqrt{2}(x_i)_1, \sqrt{2}(x_i)_2, \sqrt{2}(x_i)_3, (x_i)_1^2, (x_i)_2^2, (x_i)_3^2, \sqrt{2}(x_i)_1(x_i)_2, \sqrt{2}(x_i)_1(x_i)_3, \sqrt{2}(x_i)_2(x_i)_3]^T$$

Then
$$\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$
.

• Kernel: $K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y})$; common kernels:

$$e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$
, (Radial Basis Function) $(\mathbf{x}_i^T \mathbf{x}_j / a + b)^d$ (Polynomial kernel)

Can be inner product in infinite dimensional space Assume $x \in R^1$ and $\gamma > 0$.

$$e^{-\gamma ||x_{i}-x_{j}||^{2}} = e^{-\gamma(x_{i}-x_{j})^{2}} = e^{-\gamma x_{i}^{2}+2\gamma x_{i}x_{j}-\gamma x_{j}^{2}}$$

$$= e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}} \left(1 + \frac{2\gamma x_{i}x_{j}}{1!} + \frac{(2\gamma x_{i}x_{j})^{2}}{2!} + \frac{(2\gamma x_{i}x_{j})^{3}}{3!} + \cdots\right)$$

$$= e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}} \left(1 \cdot 1 + \sqrt{\frac{2\gamma}{1!}} x_{i} \cdot \sqrt{\frac{2\gamma}{1!}} x_{j} + \sqrt{\frac{(2\gamma)^{2}}{2!}} x_{i}^{2} \cdot \sqrt{\frac{(2\gamma)^{2}}{2!}} x_{j}^{2} + \sqrt{\frac{(2\gamma)^{3}}{3!}} x_{i}^{3} \cdot \sqrt{\frac{(2\gamma)^{3}}{3!}} x_{j}^{3} + \cdots\right) = \phi(x_{i})^{T} \phi(x_{j}),$$

where

$$\phi(x) = e^{-\gamma x^2} \left[1, \sqrt{\frac{2\gamma}{1!}} x, \sqrt{\frac{(2\gamma)^2}{2!}} x^2, \sqrt{\frac{(2\gamma)^3}{3!}} x^3, \cdots \right]^T.$$

Decision function

At optimum

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i \mathbf{y}_i \phi(\mathbf{x}_i)$$

Decision function

$$\mathbf{w}^{T} \phi(\mathbf{x}) + \mathbf{b}$$

$$= \sum_{i=1}^{I} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}) + \mathbf{b}$$

$$= \sum_{i=1}^{I} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + \mathbf{b}$$

Support Vectors: More Important Data

Only $\phi(\mathbf{x}_i)$ of $\alpha_i > 0$ used \Rightarrow support vectors

Outline

- Basic concepts: SVM and kernels
- SVM primal/dual problems
- Logistic Regression
- Loss Functions

Deriving the Dual

• Consider the problem without ξ_i

$$\min_{\boldsymbol{w},b} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$$

subject to
$$y_i(\boldsymbol{w}^T \phi(\boldsymbol{x}_i) + b) \ge 1, i = 1, \dots, I.$$

Its dual

$$\begin{aligned} \min_{\boldsymbol{\alpha}} & & \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha} \\ \text{subject to} & & 0 \leq \alpha_i, \qquad i = 1, \dots, I, \\ & & \mathbf{y}^T \boldsymbol{\alpha} = 0. \end{aligned}$$

Lagrangian Dual

$$\max_{\alpha \geq 0} (\min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)),$$

where

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i=1}^{I} \frac{\alpha_i}{\alpha_i} \left(y_i(\boldsymbol{w}^T \phi(\boldsymbol{x}_i) + b) - 1 \right)$$

Strong duality

$$\min \ \mathsf{Primal} = \max_{\alpha \geq 0} (\min_{\boldsymbol{w},b} L(\boldsymbol{w},b,\alpha))$$

• Simplify the dual. When α is fixed,

$$\min_{\boldsymbol{w},b} L(\boldsymbol{w}, b, \alpha) =
\begin{cases}
-\infty & \text{if } \sum_{i=1}^{l} \alpha_{i} y_{i} \neq 0 \\
\min_{\boldsymbol{w}} \frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w} - \sum_{i=1}^{l} \alpha_{i} [y_{i}(\boldsymbol{w}^{T} \phi(\boldsymbol{x}_{i}) - 1] & \text{if } \sum_{i=1}^{l} \alpha_{i} y_{i} = 0
\end{cases}$$

• If $\sum_{i=1}^{l} \alpha_i y_i \neq 0$, decrease

$$-b\sum_{i=1}^{l}\alpha_{i}y$$

in $L(w, b, \alpha)$ to $-\infty$

• If $\sum_{i=1}^{l} \alpha_i y_i = 0$, optimum of the strictly convex $\frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{l} \alpha_i [y_i (\mathbf{w}^T \phi(\mathbf{x}_i) - 1]]$ happens when

$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = 0.$$

Thus,

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i y_i \phi(\mathbf{x}_i).$$

Note that

$$\mathbf{w}^{T}\mathbf{w} = \left(\sum_{i=1}^{I} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})\right)^{T} \left(\sum_{j=1}^{I} \alpha_{j} y_{j} \phi(\mathbf{x}_{j})\right)$$
$$= \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$$

The dual is

$$\max_{\alpha \geq 0} \begin{cases} \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) & \text{if } \sum_{i=1}^{l} \alpha_i y_i = 0 \\ -\infty & \text{if } \sum_{i=1}^{l} \alpha_i y_i \neq 0 \end{cases}$$

- Lagrangian dual: $\max_{\alpha \geq 0} (\min_{\boldsymbol{w},b} L(\boldsymbol{w},b,\alpha))$
- $-\infty$ definitely not maximum of the dual Dual optimal solution not happen when

$$\sum_{i=1}^{l} \alpha_i y_i \neq 0$$

.

Dual simplified to

$$\max_{\boldsymbol{\alpha} \in R^{I}} \quad \sum_{i=1}^{I} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{I} \sum_{j=1}^{I} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\boldsymbol{x}_{i})^{T} \phi(\boldsymbol{x}_{j})$$
subject to
$$\boldsymbol{y}^{T} \boldsymbol{\alpha} = 0,$$

$$\alpha_{i} \geq 0, i = 1, \dots, I.$$

- Our problems may be infinite dimensional
- Can still use Lagrangian duality
 See a rigorous discussion in Lin (2001)

Outline

- Basic concepts: SVM and kernels
- SVM primal/dual problems
- Logistic Regression
- Loss Functions

Logistic Regression

• For a label-feature pair (y,x), assume the probability model

$$p(y|x) = \frac{1}{1 + e^{-yw^Tx}}.$$

- w is the parameter to be decided
- Assume

$$(y_i, x_i), i = 1, ..., I$$

are training instances

Logistic Regression (Cont'd)

 Logistic regression finds w by maximizing the following likelihood

$$\max_{\mathbf{w}} \quad \prod_{i=1}^{I} p(y_i | \mathbf{x}_i). \tag{1}$$

Regularized logistic regression

$$\min_{\boldsymbol{w}} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{l} \log \left(1 + e^{-y_i \boldsymbol{w}^T \boldsymbol{x}_i} \right). \quad (2)$$

C: regularization parameter decided by users

Outline

- Basic concepts: SVM and kernels
- SVM primal/dual problems
- Logistic Regression
- Loss Functions

- We derive SVM from the viewpoint of maximal margin
- We derive logistic regression from minimizing the negative log likelihood
- They can both be considered from the viewpoint of regularized linear classification

Minimizing Training Errors

 Basically a classification method starts with minimizing the training errors

```
min (training errors)
```

- That is, all or most training data with labels should be correctly classified by our model
- A model can be a decision tree, a support vector machine, a neural networks, or other types

- We consider the model to be a vector w
- That is, the decision function is

$$sgn(\mathbf{w}^T \mathbf{x})$$

• For any data, x, the predicted label is

$$\begin{cases} 1 & \text{if } \boldsymbol{w}^T \boldsymbol{x} \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

The two-dimensional situation

This seems to be quite restricted, but practically x is in a much higher dimensional space

- To characterize the training error, we need a loss function $\xi(w; x, y)$ for each instance (x, y)
- Ideally we should use 0-1 training loss:

$$\xi(\boldsymbol{w}; \boldsymbol{x}, \boldsymbol{y}) = \begin{cases} 1 & \text{if } \boldsymbol{y} \boldsymbol{w}^T \boldsymbol{x} < 0, \\ 0 & \text{otherwise} \end{cases}$$

 However, this function is discontinuous. The optimization problem becomes difficult

We need continuous approximations

Loss Functions

Some commonly used ones:

$$\xi_{L1}(\boldsymbol{w}; \boldsymbol{x}, y) \equiv \max(0, 1 - y \boldsymbol{w}^T \boldsymbol{x}),$$
 (3)

$$\xi_{L2}(\boldsymbol{w}; \boldsymbol{x}, y) \equiv \max(0, 1 - y \boldsymbol{w}^T \boldsymbol{x})^2,$$
 (4)

$$\xi_{LR}(\boldsymbol{w};\boldsymbol{x},\boldsymbol{y}) \equiv \log(1 + e^{-\boldsymbol{y}\boldsymbol{w}^T\boldsymbol{x}}). \tag{5}$$

- SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
 (3)-(4)
- Logistic regression (LR): (5)

Loss Functions (Cont'd)

Their performance is usually similar

Common Loss Functions (Cont'd)

- However, minimizing training losses may not give a good model for future prediction
- Overfitting occurs

Overfitting

- See the illustration in the next slide
- For classification,
 You can easily achieve 100% training accuracy
- This is useless
- When training a data set, we should Avoid underfitting: small training error Avoid overfitting: small testing error

lacktriang and lacktriang: training; lacktriang and lacktriang: testing

Regularization

- To minimize the training error we manipulate the w vector so that it fits the data
- To avoid overfitting we need a way to make **w**'s values less extreme.
- One idea is to make w values closer to zero
- We can add, for example,

$$\frac{\boldsymbol{w}^T \boldsymbol{w}}{2}$$
 or $\|\boldsymbol{w}\|_1$

to the function that is minimized

Regularized Linear Classification

- Training data $\{y_i, x_i\}, x_i \in R^n, i = 1, \dots, l, y_i = \pm 1$
- *I*: # of data, *n*: # of features

$$\min_{\mathbf{w}} f(\mathbf{w}), \quad f(\mathbf{w}) \equiv \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{i=1}^{I} \xi(\mathbf{w}; \mathbf{x}_i, y_i)$$

- $w^T w/2$: regularization term (we have no time to talk about L1 regularization here)
- $\xi(w; x, y)$: loss function: we hope $yw^Tx > 0$
- C: regularization parameter

Discussion

- You can use ||w||₁ regularization. This is now popular because of sparsity (i.e., some w's components are zeros
 But do we still have maximal margin interpretation?
- For SVM, can we have an interpretation like maximum likelihood of logistic regression?
- For regularized logistic regression, can we have an interpretation of maximal margin?

References I

- B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In *Proceedings of the Fifth Annual Workshop on Computational Learning Theory*, pages 144–152. ACM Press, 1992.
- C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273-297, 1995.
- C.-J. Lin. Formulations of support vector machines: a note from an optimization point of view. Neural Computation, 13(2):307–317, 2001.

