-
1-5: Least-squares |

@ A: k x n. Usually
k>n

otherwise easily the minimum is zero.

@ Analytical solution:

f(x) =(Ax — b)T(Ax — b)
—xTATAx —2b"Ax + bTb

Vf(x) =2ATAx —2ATh =0
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-
1-5: Least-squares ||

@ Regularization, weights:

1
§AXTX + wi(Ax — b)3 + - - + wi(Ax — b)?
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2-4: Convex Combination and Convex
Hull |

@ Convex hull is convex

Then

ax + (1 — a)x
=abix) + -+ abpxi+
(1 —a)bixi + -+ (1 — a)frxg

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 3/228



2-4: Convex Combination and Convex
Hull 11

Each coefficient is nonnegative and

b+ +ab+ (1 —a)f +--+ (1 — )b
= a+(l—a)=1
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-
2-7: Euclidean Balls and Ellipsoid |

We prove that any

x = xc + Au with |Jul], <1

satisfies
(x —x)TP (x—x)<1
Let
A= P2
because P is symmetric positive definite.
Then

uTATP 1Ay = T PY2Pp-1pY2, < 1,
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]
2-10: Positive Semidefinite Cone |

@ S’ is a convex cone. Let
Xl,XQ - S_Z
For any 8, > 0,60, > 0,

2T(0.X1 + 02X0)z = 012" Xyz + 622" Xoz > 0

Optimization and Machine Learning 6/228



]
2-10: Positive Semidefinite Cone I

e Example:
Xy 2
{y Z] €54

is equivalent to
xZO,zZO,xz—yZZO
@ If x> 0or (z>0)is fixed, we can see that
2
z > Y
X

has a parabolic shape

Optimization and Machine Learning 7/228



N
2-12: Interaction |

@ When t is fixed,
{(x1,x2) | =1 < xycost+ xycos2t < 1}

gives a region between two parallel lines
This region is convex
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]
2-13: Affine Function |

e f(S) is convex:
Let

f(x1) € £(S),f(x) € f(S)
af(x) + (1 — a)f(x)
=a(Ax1 + b) + (1 — a)(Axx + b)
:A(OzXl + (1 — Oé)XQ) +b
ef(S)
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]
2-13: Affine Function I

o f1(C) convex:
X1, Xo € f_l(C)
means that
Axip+be C.Ax+beC

Because C is convex,

a(Axy + b) + (1 — a)(Ax, + b)
=Alaxy + (1 —a)x)+be C

Thus

ax; + (1 —a)x, € £1(C)
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]
2-13: Affine Function Il

@ Scaling:

aS ={ax|x € S}

@ Translation
S+a={x+a|xe$}
@ Projection

T={x1eR"|(x,%)€S,xeR"},SCR"<XR"

@ Scaling, translation, and projection are all affine
functions
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]
2-13: Affine Function IV

For example, for projection

X2

f(x)=[I 0] H +0

I: identity matrix
@ Solution set of linear matrix inequality

C={S|S =0} is convex

f(X):X1A1—|—"'+XmAm—B:AX—|—b
f1(C) = {x | f(x) = 0} is convex

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 12 /228



]
2-13: Affine Function V

But this isn't rigourous because of some problems in

arguing
f(x)=Ax+b

A more formal explanation:
C = {s € R” | mat(s) € S” and mat(s) < 0}
IS convex

f(x) = xyvec(Ar) + -+ + xmvec(An) — vec(B)
= |vec(A1) -+ vec(An)] x + (—vec(B))
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]
2-13: Affine Function VI

FH(C) = {x | mat(f(x)) € S and mat(f(x)) < 0}

@ Hyperbolic cone:

C={(z,t)|z"z<t? t>0}

is convex (by drawing a figure in 2 or 3 dimensional
space)
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]
2-13: Affine Function VII

@ We have that

is affine. Then

fFYC)={x|f(x) e C}
= {x| xTPx < (ch)z, c'x> 0}

IS convex

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 15 /228



-
Perspective and linear-fractional function |

@ Image convex: if S is convex, check if
{P(x,t) | (x,t) € 5}

convex or not
Note that S is in the domain of P
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-
Perspective and linear-fractional function

@ Assume
(x1,t1), (X2, ) € S
We hope
ok 1 (1—a)2 = P(A,B),
t b
where

(A,B)e S
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-
Perspective and linear-fractional function

@ We have

X X abx;+ (1 —a)tx
a—1+(1—a—2: 2 + )t
t to tit

_Ozt2X1 + (1 — Oé)t1X2
_Oétltz + (1 — Oé)tltg

atr (1*0{)1’1
. at2+(1—a)t1X1 + at2+(1—a)t1X2
o aty (1-a)ty

ab+(l-a)t b+ ab+(l-a)t t
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-
Perspective and linear-fractional function

IV

Let
B atb
Cab+(1—-a)t
We have
Ox+(1-0)x A
oty +(1—-0)t, B
Further
(A,B)e S
because

(Xlu tl); (X27 t2) S S
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-
Perspective and linear-fractional function

V

and
S is convex

@ Inverse image is convex
@ Given C a convex set

PHC) ={(x.t) | P(x,t) = x/t € C}

IS convex

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 20/228



-
Perspective and linear-fractional function

Vi

o Let
(x1,t1) i x1/t1 € C
(x2, 1) i x2/tp € C
Do we have
0(x1, t1) + (1 — 0)(xe, ta) € P71(C)?
That is,

Ox; + (1 — (9)X2
0ty + (1 — )t

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 21/228
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-
Perspective and linear-fractional function
VI
Let

Ox1 + (1 — 0)x X1
0ty + (1 — Ot t1 t

Earlier we had

B aty
N aty + (1 — Oé)tl

Then

(Oé(tg — tl) + t1)0 = ab
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-
Perspective and linear-fractional function

VIII

tH0 = aty — atl + atif

o — t10
N tH0 + (]. — 19)1'2
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-
2-16: Generalized inequalities |

@ K contains no line:
VxwithxéeKand —x€ K= x=0

@ Nonnegative orthant

Clearly all properties are satisfied

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 24 /228



-
2-16: Generalized inequalities Il

@ Positive semidefinite cone:

PD matrices are interior

@ Nonnegative polynomial on [0, 1]
@ When n =2

X1 > —txo, Vt € [0, 1]
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2-16: Generalized inequalities I

e t=0
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2-16: Generalized inequalities IV

e Vt e 0,1]

@ |t really becomes a proper cone
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-
2-17: |
@ Properties:
X 2K Y, U2k V

implies that

y—xeK
v—ueK

@ From the definition of a convex cone,
(y—x)+(v—u)eK

Then
X+u=<ky+v
Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 28 /228



N
2-18: Minimum and minimal elements |

@ The minimum element
SCx +K
@ A minimal element

(XQ—K)HSZ{XQ}
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-
2-19: Separating hyperplane theorem |

@ We consider a simplified situation and omit part of
the proof

@ Assume

inf Jlu—v| >0
ueC,veD

and minimum attained at ¢, d
o We will show that

_ lldl? = el?
- 2

a=d—-—c, b

forms a separating hyperplane a’x = b
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2-19: Separating hyperplane theorem ||
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-
2-19: Separating hyperplane theorem llI

Assume the result is wrong so there is u € D such
that
-
a'u—b<o0

We will derive a point ¢’ in D but it is closer to ¢
than d. That is,

lu" =l < [ld =<

Then we have a contradiction

@ The concept
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-
2-19: Separating hyperplane theorem IV

d’d —c’
Tub=(d-Tu- 2T g

implies that

1
(d—c)"(u—d)+ Slld - c|* <o
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-
2-19: Separating hyperplane theorem V

%Hd—k t(u—d)— CH2

t=0

=2(d + t(u—d) —c)"(u—d)

=2(d —c)"(u—d) <0 -

There exists a small t € (0,1) such that
ld + t(u—d) —c| < |ld =l

However,
d+t(u—d)eD,

so there is a contradiction
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-
2-19: Separating hyperplane

@ Strict separation
C D

theorem VI

They are disjoint convex sets. However, no a, b such
that

a’x < b¥xe Canda'x>bVxeD

Optimization and Machine Learning

35 /228



-
2-20: Supporting hyperplane theorem |

Case 1: C has an interior region
e Consider 2 sets:
interior of C versus {xg},
where xp is any boundary point
@ If C is convex, then interior of C is also convex
@ Then both sets are convex

@ We can apply results in slide 2-19 so that there
exists a such that

a’x < a’xg, Vx € interior of C
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-
2-20: Supporting hyperplane theorem ||

@ Then for all boundary point x we also have
alx < aTxo

because any boundary point is the limit of interior
points

Case 2: C has no interior region

@ In this situation, C is like a line in R3 (so no
interior). Then of course it has a supporting
hyperplane

@ We don't do a rigourous proof here
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3-3: Examples on R |

@ Example: x3,x >0

e Example: x71, x>0
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3-3: Examples on R |l

e Example: x/2,x >0
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3-3: Examples on R Il
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-
3-4: Examples on R" and R™*" |

A X € R™"
tr(ATX) = Z(ATX)Jj

_ZZATX _EJ:Z:AUXU
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]
3-7: First-order Condition |

@ An open set: for any x, there is a ball covering x
such that this ball is in the set

@ Global underestimator:
z — f(x)
y — X

z="f(x)+ ' (x)(y — x)

= f(x)
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]
3-7: First-order Condition Il

@ =: Because domain f is convex,
forall 0 <t <1,x+t(y —x) & domain f

f(x +t(y —x)) < (1 —t)f(x) +tf(y)
f(x+tly —x)) — f(x)
t

f(y) > f(x) +

when t — 0,

f(y) > f(x) + VF(x)"(y — x)
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]
3-7: First-order Condition IlI

Forany 0 <6 <1,
z=0x+(1-0)y
f(x) 2f(2) + VI(2) (x = 2)
—f(2) + VFf(2)"(1 - 0)(x — y)

f(y) 2f(2) + VF(2) (v - 2)
=f(2) + Vf(z)"0(y — x)
0f(x) + (1 = 0)f(y) = f(2)
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-
3-7: First-order Condition |V
@ First-order condition for strictly convex function:

f is strictly convex if and only if

fy) > f(x) + VF(x)"(y —x)
@ < it's easy by directly modifying > to >

f(x) >f(2) +Vf(z)T(x—z)
=f(z) + V£(z) (1 - 0)(x — y)

f(y) > f(2)+VF(z2) (y—2) = f(2)+VF(z)T0(y—x)
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]
3-7: First-order Condition V

@ =-: Assume the result is wrong. From the 1st-order
condition of a convex function, dx, y such that

x # y and
V() (y = x) = f(y) - f(x) (1)
For this (x, y), from the strict convexity
f(x+tly —x)) — f(x) <tf(y) — tf(x)
=Vf(x)"t(y — x),Vt € (0,1)

Optimization and Machine Learning 46 /228
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]
3-7: First-order Condition VI

Therefore,
f(x+t(y—x)) < f(x)+Vf(x)Tt(y—X),Vt € (0,1)
However, this contradicts the first-order condition:

f(x+t(y—x)) > fF(x)+VF(x)"t(y—x),vt € (0,1)

This proof was given by a student of this course
before
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N
3-8: Second-order condition |

@ Proof of the 2nd-order condition:
We consider only the simpler condition of n =1

°o =

Chih-Jen Lin (Nationa i

f(x+t) > f(x)+ f(x)t

o fx ) = F(x) = Fx)t
t—0 t2
i 2(f'(x +2 —f'(x)) _ 1) > 0

Optimization and Machine Learning
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N
3-8: Second-order condition Il

fix+t)="Ff(x)+Ff(x)t+ %f”(i)#
f(x)+ f(x)t

Vv

by 1st-order condition
@ The extension to general n is straightforward
o If V2f(x) = 0, then f is strictly convex
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N
3-8: Second-order condition IlI

Using 1st-order condition for strictly convex
function:

f(y)
- 1 T2/
=f(x) + V() (y = x) + 5y = x) V()Y = %)
>f(x) + VE(x)" (y —x)
@ It's possible that f is strictly convex but

V2f(x) #£ 0
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N
3-8: Second-order condition 1V

e Example:

Details omitted
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-
3-9: Examples |

@ Quadratic-over-linear

of _ 2x of x?2

ox yldy  y?
OPF 2 O°f Ox Pf  2x2

OxOx )_/’ ox0y _F’ dydy — y3’

52/228



Vif = (g e™)e” — efer V2 f = —eXieN

TS T e

Note that if

Z) = exXp Xk

Chih-Jen Lin (National Taiwan Univ. Optimization and Machine Learning
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3-10 Il

then
(2z")y = z(2"); = 2z

Cauchy-Schwarz inequality
(arby + -+ aphy)? < (a5 4 -+ a2)(B2 + - - + b?)

ak = Vikn/Zk, bk = /2«

Note that

ze >0
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-
3-12: Jensen's inequality |

@ General form

([ pe)za) < [ pla)f(z)es
@ Discrete situation

f(z pizi) < Zp,-f(z,-), pr —1
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-
3-12: Jensen's inequality |
@ Proof:

f(p1z1 + poz2 + p32z3)

<(1—p3) (f <plzl%;222>> + p3f(z3)

S(l — p3) (1 f(Zl) + Lf(b)) + p3f(23)
— P3 — P3
=p1f(z1) + p2f(22) + p3f(z3)
@ Note that
p1 p  1—p3 _

+ = 1
l-p3 1-p3 1-—p3
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-
3-14: Positive weighted sum &
composition with affine function |

@ Composition with affine function:
We know

f(x) is convex

g(x) = f(Ax + b)
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-
3-14: Positive weighted sum &
composition with affine function Il

convex”?

(1 —a)x + ax)

=f(A((1 — a)x1 + axx) + b)

f((1 — a)(Axy + b) + a(Ax, + b))
(1 — a)f(Axy + b) + af(Axx + b)
(1 —a)g(x) + ag(x)

"\OQ
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N
3-15: Pointwise maximum |

@ Proof of the convexity

f((1—a)x + ax)
=max(A((1 — a)x1 + axz), ..., fm((1 — a)x1 + axz))
<max((1 —a)fi(x) +afilx),...,
(1 — a)fp(x1) + afn(x2))
<(1 — a)max(f(x1),- .., fm(x1))+
amax(f(x2), ..., fm(x2))
<(1—a)f(x1) + af(x)
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N
3-15: Pointwise maximum |l

e For
F(x) =xu+ -+ X

(7

consider all

combinations
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3-16: Pointwise supremum |

@ The proof is similar to pointwise maximum
@ Support function of a set C:
When y is fixed,
f(x,y) =y'x

is linear (convex) in x
@ Maximum eigenvales of symmetric matrix

F(X,y)=y"Xy

is a linear function of X when y is fixed
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]
3-19: Minimization |

@ Proof:
Let € > 0. dy;, y» € C such that

fxi, ) < g(x) +e
f(x,y2) < gxe) +€
g0x1 + (1 —0)x) = |212 f(0x1+ (1 —0)x2, y)
y

<f(Ox1 + (1 — 0)x2, 0y1 + (1 — 0)ys)
SQf(thl) + (1 - e)f(x27)/2)
<Og(x1) + (1 —0)g(x) +¢
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]
3-19: Minimization Il

@ Note that the first inequality use the peroperty that
C is convex to have
Oy +(L—0)y, € C
@ Because the above inequality holds for all € > 0,

g(tx + (1 - 0)x) < 0g(x) + (1 —0)g(x)

@ First example:
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]
3-19: Minimization |l

The goal is to prove
A—BC'B" =0

Instead of a direct proof, here we use the property
in this slide. First we have that f(x, y) is convex in
(x, y) because

[ A B

BT C]to

Consider

min f(x, y)
y
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]
3-19: Minimization IV

Because
C >0,

the minimum occurs at
2Cy +2BTx =0
y=—-C1B"x
Then

g(x) =x"Ax —2x"BC'Bx + x"BC'CC'B"x
= x"(A— BC'BT)x
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]
3-19: Minimization V

is convex. The second-order condition implies that

A—BC'BT =0
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-
3-21: the conjugate function |

@ This function is useful later

@ When y is fixed, maximum happens at

y = f'(x) (2)

by taking the derivative on x
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3-21: the conjugate function Il

@ Explanation of the figure: when y is fixed
z=xy

is a straight line passing through the origin, where y
is the slope of the line. Check under which x,

yx and f(x)

have the largest distance

@ From the figure, the largest distance happens when
(2) holds
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3-21: the conjugate function Il
@ About the point

The tangent line is
—f
2= fbo) _ f'(xo)
X — X0
where Xxp is the point satisfying

y = f'(x)
When x = 0,
z=—xf (x0) + f(x0)

Chih-Jen Lin (National Taiwan Univ.) Optimization an

oy + f(30) = ~F'(y)
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-
3-21: the conjugate function IV

@ *is convex: Given Xx,
y'x = f(x)

is linear (convex) in y. Then we apply the property
of pointwise supremum
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3-22: examples |

@ negative logarithm
f(x) = —logx

) 1
3X(xy+ og X) y+

If y < 0, pictures of xy and log x are
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3-22: examples Il

Thus
xy + log x

has maximum. Then

xy + logx = —1 — log(—y)
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-
3-22: examples Il

@ strictly convex quadratic
Qx=y,x=Qly

yTx — —XTQX

—y Q7 ty — EyTQ_lQQ_ly

L 141
—EyQy
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3-23: quasiconvex functions |

e Figure on slide:
Sa = [a, b], S = (—o0, ]

Both are convex

@ The figure is an example showing that quasi convex
may not be convex
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3-26: properties of quasiconvex functions |

@ Modified Jensen inequality:
f quasiconvex if and only if

f(Ox+(1—0)y) < max{f(x),f(y)},Vx,y,0 € [0,1].

e = lLet
A = max{f(x),f(y)}

Sa iIs convex

X € Sp,y € Sa
Ox + (1 —60)y € Sa
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-
3-26: properties of quasiconvex functions

fOx+(1—-0)y) <A

and the result is obtained

@ < If results are wrong, there exists « such that S,
IS not convex.

dx, y,0 with x,y € S,,0 € [0, 1] such that

Ox +(1—0)y ¢ S,
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3-26: properties of quasiconvex functions

Then
f(O0x+ (1 —0)y) > a>max{f(x), f(y)}

This violates the assumption
@ First-order condition (this is exercise 3.43):
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3-26: properties of quasiconvex functions

IV

u_yn
F((1—t)x + ty) < max(f(x), f(y)) = f(x)
f(x+t(y —x)) — f(x) <0
" >
l!m) f(X+ t(y —tX)) — f(X) _ Vf(x)T(y _ X) <0
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-
3-26: properties of quasiconvex functions

V

@ <: If results are wrong, there exists a such that S,
IS not convex.

dx, y,0 with x,y € S,,0 € [0, 1] such that

Ox +(1—0)y ¢ S,
Then

f(0x+ (1 —0)y) >a>max{f(x),f(y)} (3)

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 79 /228



-
3-26: properties of quasiconvex functions

Vi

Because f is differentiable, it is continuous.
Without loss of generality, we have

f(z) > f(x),f(y),Vz between x and y  (4)

Let's give a 1-D interpretation. From (3), we can
find a ball surrounding

Ox+ (1 —0)y
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-
3-26: properties of quasiconvex functions

VII

and two points x’, y’ such that

f(z) > f(x') = f(y'),Vz between x" and y’

z=x+0(y —x),0 € (0,1)

Vi(z) (=0(y —x)) <0
Vi(z) (y =x = 0(y —x)) <0
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-
3-26: properties of quasiconvex functions

VIII

Then
Vf(z)"(y —x)=0,v0 € (0,1)
f(x+6(y —x))
=f(x) + VFf(t) 0(y — x)
f(x),v0 € [0,1)
This contradicts (3).
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3-27: Log-concave and log-convex
functions |

o Powers:
log(x?) = alog x

log x is concave

@ Probability densities:
1 VT —1 -
log f(x) = _E(X —X)'L 7 (x — X) + constant

> 1 is positive definite. Thus log f(x) is concave
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-
3-27: Log-concave and log-convex

functions I
@ Cumulative Gaussian distribution

log ®(x) = Iog/ e "2 dy

d e X°/2
L og d(x) =
dx og (X) fjoo e—12/2y
d2
T log ®(x)

(f:‘oo e—u2/2du)e—xz/2(_x) _ e—x2/26—x2/2
- (oo €74/2du)?
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-
3-27: Log-concave and log-convex
functions Il

Need to prove that

</ e‘“z/zdu> X + e 1250

x > u for all u € (—o0, x],

@ Because
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3-27: Log-concave and log-convex

functions IV

we have

Optimization and Machine Learning
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-
3-27: Log-concave and log-convex
functions V

This proof was given by a student (and polished by
another student) of this course before
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-
4-3: Optimal and locally optimal points |

e fy(x)=1/x

o fy(x) = xlogx
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-
4-3: Optimal and locally optimal points Il

fo(x)=1+logx =0

x=el=1/e

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 89 /228



-
4-3: Optimal and locally optimal points |lI

fi(x) =3x*—3=0
x ==l

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 90 /228



-
4-7: example |

x1/(14+x3) <0
=% x1 <0

(X1+X2)2:O
S oxy+x=0
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-
4-9: Optimality criterion for differentiable

fo |

@ <: easy
From first-order condition

fo(y) > fo(x) + Vh(x)" (y —x)
Together with
V()" (y —x)>0

we have

for all feasible y

)
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-
4-9: Optimality criterion for differentiable

fo Il

@ = Assume the result is wrong. Then

VihH(x) (y —x) <0

Let

z(t) =ty + (1 —t)x

9 (1) = V() (y )

SR(E)| = V(- ) <0
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-
4-9: Optimality criterion for differentiable

fo 11
There exists t such that
fo(z(t)) < fo(x)
@ Note that
z(t)
is feasible because
F(2(£)) < th(x) + (1 — )f(y) <0

and

A(tx+(1—t)y) = tAx+(1—t)Ay = tb+(1—-b)b=b
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-
4-9: Optimality criterion for differentiable

fo IV
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.
4-10 |

@ Unconstrained problem:

Let
y = x — tViy(x)

It is feasible (unconstrained problem). Optimality
condition implies

Vi) (y = x) = ~t[VA(x)|* = 0

Thus
Vi(x)=0

e Equality constrained problem
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.
4-10 II

< Easy. For any feasible y,
Ay =>b

Vi(x) (y—x) = —v"A(y—x) = —vT(b—b) =0>0

So x is optimal

=>: more complicated. We only do a rough
explanation
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.
4-10 I

From optimality condition
Vi(x) v =ViH(x) ((x+v) —x) > 0,Vv e N(A)
N(A) is a subspace in 2-D. Thus

ve N(A) = —v e N(A)
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Vi
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.
4-10 V

We have
Vi(x)"v =0,vv € N(A)

Vi(x) L N(A), Vi(x) € R(AT)
= v such that Viy(x) + ATy =0

@ Minimization over nonnegative orthant
< Easy
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.
4-10 VI

For any y > 0,

Vifo(x)y; >0 ifx;=0

Vit (x)(yi = xi) = {0 if x; > 0

Therefore,
Viy(x)(y —x) >0

and

x is optimal
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.
4-10 VII

= If x;, = 0, we claim

v,'fo(X) Z 0
Otherwise,

Vifo(x) <0

Let
y = x except y; — o0

Vi) (y = x) = Vify(x)(yi = x) = —o0

This violates the optimality condition
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.
4-10 VI

If x; > 0, we claim
Vifo(x) =0
Otherwise, assume

V,‘fb(X) >0

Consider

y = x except y; = x;/2> 0
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.
4-10 IX

It is feasible. Then
Vi(x)" (y—x) = Vif(x)(vi—xi) = = Vifo(x)x;/2 < 0
violates the optimality condition. The situation for

Vifo(x) <0

is similar
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-
4-23: examples |

@ least-squares
minx’ (ATA)x —2b" Ax + b" b

AT A may not be invertibe = pseudo inverse

@ linear program with random cost
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-
4-23: examples |l

Var(C'x) = Ec((C"x —2"x)(C"x —2"x))
= Ec(x"(C—2)(C—-2)'x)

= x'¥x
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-
4-25: second-order cone programming |

@ Cone was defined on slide 2-8

{0 ) [ix]] < ¢
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-
4-35: generalized inequality constraint |

e f € R" — RN Kj-convex:
fi(Ox + (1 = 0)y) 2k 0fi(x) + (1 — O)fi(y)

@ See page 3-31
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N
4-37: LP and SOCP as SDP |

@ LP and equivalent SDP

di1 - din X1

Ax =
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4-37: LP and SOCP as SDP Il
@ For SOCP and SDP we will use results in 4-39:

[”%P APX"] =0 ATA < t2,q t >0

Aty
e Now
p=m,g=1
A=Ax+ bt = c,-Tx+d,-
1A + bil|* < (¢ x + d;)?,
C,Tx+d,- >0fromt>0
@ Thus

[Aix + bif| < ¢ x + d]
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N
4-39: matrix norm minimization |

@ Following 4-38, we have the following equivalent
problem

min t
subject to  ||All <t
@ We then use

Al <t ATA=< 21t >0

t A
< [AT tl] =0
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R
4-39: matrix norm minimization |l

to have the SDP
min t

: tl A(x)
subject to !A(X)T il ] =0

@ Next we prove

t/p><p Ap><q T 2
[AT o =0 ATA = P, t >0
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N
4-39: matrix norm minimization ||
@ = we immediately have

t>0

If t >0,
T AT T _tlpxp Apxq| | —Av
VAT T e

[, TAT T __tAV+tAV
=T T a4y

=t(t’v v — v TATAv) > 0

vi(t? — ATA)v > 0,Vv
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N
4-39: matrix norm minimization |V

and hence
t’l — ATA =0
Ift=0
[0 Al [—-Av
[—VTAT VT] _AT 0] [ , ]
[ Av
— [—VTAT VT] _—ATAV:|
=—2vTATAv > 0, Vv
Therefore

ATA=<0
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N
4-39: matrix norm minimization V

@ < Consider

[t Al [u
u" V7] AT t/] H
[ tu + Av
:[UT VT} _ATu+tv]

—tu'u+2v AT+ tvTy

We hope to have

tu'u+2vTATu+tv v >0,Y(u, v)
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R
4-39: matrix norm minimization VI
If t >0
min tu’ u + 2vTATu+ tvTy
u

has optimum at
—Av

t

u =

We have

tu'u+2vTATu4+tvTy
T v AT Ay
=tv'v - ———
t
1
:EVT(F/ —ATA)v > 0.
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N
4-39: matrix norm minimization VIl

Hence
=
If t =0
ATA=<0
vIATAY <0, vTATAv = ||Av|? =0
Thus

Av =0,Vv

vl gk

ATu
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N
4-39: matrix norm minimization VIII

Thus

0 A
EE

Optimization and Machine Learning
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|
4-40: Vector optimization |

@ Though
fo(x) is a vector
note that
fi(x) is still R™ — R?
@ K-convex

See 3-31 though we didn't discuss it earlier

fo(Ox + (1 — 0)y) <k 0fr(x) + (1 — 0)fo(y)
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]
4-41: optimal and pareto optimal points |

@ See definition in slide 2-38

e Optimal
OC{x}+K

e Pareto optimal

(x —K)N O ={x}
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-
5-3: Lagrange dual function |

@ Note that g is concave no matter if the original
problem is convex or not

f(x) + Y Nifi(x) + Y vihi(x)

is convex (linear) in A, v for each x

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 121 /228



5-3:

Lagrange dual function Il

Use pointwise supremum on 3-16

sup(—fo(x) = > _ Nifi(x) = Y vihi(x))

xeD

is convex. Hence

inf(fh(x) + Z Aifi(x) + Z vihi(x))

is concave. Note that

— sup(—---) = —convex
=inf(---) = concave
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-
5-8: Lagrange dual and conjugate function

fr(—ATA—cv)
=sup((—A"A — ¢'v) " x — fo(x))

= — ir)(f(fo(x) +(ATA+c"v)x)
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-
5-9: The dual problem |

@ From 5-5, the dual problem is

max  g(\,v)
subjectto A >0

@ It can be simplified to

max —b'v
subjectto A'v—A4+c=0
A0
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-
5-9: The dual problem Il

o Further,

max —b'v
subject to ATu+c=0
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-
5-10: weak and strong duality |

@ We don't discuss the SDP problem on this slide
because we omitted 5-7 on the two-way partitioning
problem
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-
5-11: Slater’s constraint qualification |

@ We omit the proof because of no time

@ ‘“linear inequality do not need to hold with strict
inequality” : for linear inequalities we DO NOT need
constraint qualification

@ We will see some explanation later
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-
5-12: inequality from LP |

@ If we have only linear constraints, then constraint
qualification holds
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-
5-15: geometric interpretation |

@ Explanation of g(\): when X is fixed

Au+t=A
is a line. We lower A until it touches the boundary
of G
The A value then becomes g()\)
@ When

u=0=t=A

so we see the point marked as g(\) on t-axis
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-
5-15: geometric interpretation |l

@ We have A\ > 0, so
Au+t=A

must be like

rather than
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-
5-15: geometric interpretation |l|

e Explanation of p*:
In G, only points satisfying

u<o

are feasible
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|
5-16 |

@ We do not discuss a formal proof of
Slater condition = strong duality
Instead, we explain this result by figures
@ Reason of using A: G may not be convex

e Example:
min  x°
subjectto x+2<0
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5-16 |

This is a convex optimization problem
G={(x+2,x*)|x€R}

is only a quadratic curve
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.
5-16 I

The curve is not convex

@ However, A is convex
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5-16 IV
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|
5-16 V

@ Primal problem:
xX=-2

optimal objective value = 4
@ Dual problem:

g(A\) = minx* + \(x + 2)

x=-)\/2
2
max —— + 2\
>0 4
optimal A =4
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.
5-16 VI

: L 16
optimal objective value = 7 +8=4

@ Proving that A is convex
(u,t1) €A (U2, 2) €A

dxq, xo such that
filx1) <up, fo(xa) <ty
fi(x) < w, fo(x) < B

Consider

x=0x;+ (1 —-0)x
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|
5-16 VII
We have
fl(X) < 9U1 + (1 — Q)Ug
fo(x) < 0t; + (1 — Oty

u o u B uo
H ¢ H (-6 H c A
e Why “non-vertical supporting hyperplane”?
Then g(\) is well defined.

@ Note that we have
Slater condition = strong duality
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.
5-16 VIII

However, it's possible that Slater condition doesn't
hold but strong duality holds

Example from exercise 5.22:
min
subject to  x?> <0
Slater condition doesn’t hold because no x satisfies

x> <0

2
G={(x",x) | xeR}
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5-16 IX

There is only one feasible point (0, 0)
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5-16 X
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5-16 Xl
g(\) = mXin X+ x*\

. {—1/(2>\) if A>0
—00 ifA=0
Dual problem
a1/
A — 00, objective value — 0
d“=0,p"=0

Strong duality holds
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-
5-17: complementary slackness |

@ In deriving the inequality we use
hi(x*) =0 and fi(x*) <0

@ Complementary slackness
compare the earlier results in 4-10
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-
5-17: complementary slackness |l

@ 4-10: x is optimal of

min  fy(x)
subject to x; > 0,V

if and only if
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-
5-17: complementary slackness Il

@ From KKT condition

v,'fE)(X) = )\,’
)\,'X,' =0
)\i Z 07Xi Z 0
If
x; > 0,
then
)\,‘ =0= V,ﬁ)(x)
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-
5-19: KKT conditions for convex problem

@ For the problem on p5-16, neither slater condition
nor KK'T condition holds

1 \0

Therefore, for convex problems,
KKT = optimality
but not vice versa.

@ Next we explain why for linear constraints we don't
need constraint qualification
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-
5-19: KKT conditions for convex problem

@ Consider the situation of inequality constraints only:

min  fy(x)
subject to  fi(x) <0,i=1,....m

@ Consider an optimial solution x. We would like to
see if x satisfies KKT condition

@ We claim that

Vi(x)= Y —AVAi(x) (5)
i:f:(x)=0
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-
5-19: KKT conditions for convex problem

@ Assume the result is wrong. Then,

Vfy(x) =linear combination of {Vfi(x) | fi(x) = 0}
+ A,

where

A#0and ATVF(x)=0,Vi:fi(x)=0
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-
5-19: KKT conditions for convex problem

IV

@ Then there exists o < 0 such that
ox = oA

satisfies
Vii(x)Téx =0if fi(x) =0

and
fi(x 4+ dx) <0if fi(x) <0

@ We claim that dx is feasible. That is,

fi(x +0x) <0,Vi
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-
5-19: KKT conditions for convex problem

V

@ We have
fi(x + 0x) = fi(x) + Vfi(x)Tox = 0 if fi(x) =0
@ However,
Vfo(x)Téx —aATA <0

This contradicts the optimality condition that from
slide 4-9, for any feasible direction dx,

Vi(x)"éx > 0.
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-
5-19: KKT conditions for convex problem

Vi

@ We do not continue to prove

Vhkx)= > —AVA(x) (6)

A;>0,f(x)=0

because the proof is not trivial

@ However, what we want to say is that in proving
(5), the proof is not rigourous because of ~

@ For linear the proof becomes rigourous

@ This roughly give you a feeling that linear is
different from non-linear
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|
5-25 |

e Explanation of f(v)

inf(foly) v'y)

= — sn;p(l/Ty —fo(y)) = -5 (v)

where f;(v/) is the conjugate function
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|
5-26 |

@ The original problem
g(\, v) = inf ||Ax — b|| = constant
X
@ Dual norm:

Il =sup{v’y | llyll < 1}

If ], > 1,

vTy > 1yl <1
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|
5-26 Il
infllyll + 2"y
<|| =yl =vTy <0
| —ty*|| — v"(ty*) = —o0 as t — o0

Hence
inf ||y + VTy = —00
y

If [|[v]]« <1, we claim that

inf[ly|| + "y =0
y

y=0=|yl|l+v'y=0
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.
5-26 I

If dy such that
Iyl +v"y <0

then
=yl <-vTy
We can scale y so that

sup{vy | |ly| <1} > 1

but this causes a contradiction
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-
5-27: implicit constraint |

@ The dual function

c"x+ v (Ax — b)
=—b"v+x"(ATv+ <)

inf X,(ATV +¢)i = —|(ATv + <)/

—1<x,<
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-
5-30: semidefinite program |

@ From 5-29 we need that Z is non-negative in the
dual cone of Sk

@ Dual cone of S¥ is S¥ (we didn't discuss dual cone
so we assume this result)

e Why
tr(Z(---))?
We are supposed to do component-wise produt
between

Zand x;F+---+x,F, — G

157 / 228
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-
5-30: semidefinite program ||

Trace is the component-wise product
tr(AB)

:Z(AB),-,-
=D D AiBi=)_> A

i

Note that we take the property that B is symmetric
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7-4 |

@ Uniform noise

L if|z] < a
p<z>_{5a 7l <

otherwise
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-
8-10: Dual of maximum margin problem |

Largangian:

Ha” ZA T +b=1)+ pw(a'y+b+1)
HaH ZAX/JFZM%

—ZA,-+ZM/)+ZA,-+ZM/

Because of

b(— Z \i + Zm)
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-
8-10: Dual of maximum margin problem II

we have
infL = ZMZM

inf, @ + aT(— Z,- AiXi + Z;MU//) if Z,- Ai = Zi Fi
—0 if Zi Ai 7£ Zi Hi

For

lall 7
”;f T + a (_ Z AiXj + ZNiYi)
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-
8-10: Dual of maximum margin problem

we can denote it as

Ml o7
n;fTJrva

where v is a vector. We cannot do derivative because
||al| is not differentiable. Formal solution:
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-
8-10: Dual of maximum margin problem

1V
e Case 1: If ||v|| < 1/2:

llall
alv>—|allv] > - >
SO
infM +v'a>0.
a 2
However,
a=0—— H H =0
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-
8-10: Dual of maximum margin problem V

Therefore
|mc U +via=0.

o If [v] > 1/2, let

14
Tl
M—l— via
2
= —tlv|
=t(5 — V) = —oo if £ = oc

Chih-Jen Lin (National Taiwan Univ. Optimization and Machine Learning 164 /228



-
8-10: Dual of maximum margin problem

VI
Thus

all o
n;fTJrv a——

e Finally,

iar,]th: ZN-I—ZMH—

0 if > .Ai=>_ i and
H Zi )\"Xi o Zi y’l.ylH S 1/2

—oo otherwise
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8-14
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-
10-3: initial point and sublevel set |

@ The condition that S is closed if
domain of f = R"

Proof: Be definition S is closed if for every
convergent sequence

{x;} with x; € S and lim x; = x*,

—00

then

x* e 8S.
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-
10-3: initial point and sublevel set |l

Because
domain of f = R"

we have
x* € domain of f

Thus by the continuity of f,

lim f(x;) = f(x*) < f(x0)

—00

and

x*eS
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-
10-3: initial point and sublevel set IlI

@ The condition that S is closed if
f(x) — oo as x — boundary of domain f

Proof: if not, from the definition of the closeness of
S, there exists

{X,'} cS

such that
x; — x* ¢ domain f

Thus

x* is on the boundary
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-
10-3: initial point and sublevel set |V

Then
f(x;) — oo > f(x°)

violates
f(x;) < f(xo),Vi

Thus the assumption is wrong and S is closed
e Example

f(x) = Iog(z exp(a; x + b;))

domain = R"
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-
10-3: initial point and sublevel set V

e Example
f(x) = Zlog (b — a] x)

domain # R"
We use the condition that

f(x) — oo as x — boundary of domain f
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-
10-4: strong convexity and implications |

@ S is bounded. Otherwise, there exists a set
ilyi=x+4A;} CS

satisfying
lim [|A]] = o0
1—00

Then
f(y)) = f(x)+ VF(x) A+ — HA > — oo

This contradicts

f(y) < f(x°)
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-
10-4: strong convexity and implications Il

@ Proof of
p* > —o00
and {
f(x) — p* < —||VFf(x)]?
(x) = p* < 5 IVFR)
From

m
f(y) > £ + V)T (y =) + Sl =y
Minimize the right-hand side with respect to y

Vi(x)+m(y —x)=0
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-
10-4: strong convexity and implications Il
V£(x)

B m

y =X
f(y) 2 F(x) + V()T (7 = x) + Sl = xI

1
= f(x) — —[|VF(x)|I
() = 5 IVFCIP, vy
Then

. 1
P F(x) = 5 VA2 > —oc

and

1
()~ p* < 5 VA

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 174 /228



]
10-5: descent methods |
o If
f(x + tAx) < f(x)

then
VF(x)TAx <0

Proof: From the first-order condition of a convex
function

f(x + tAx) > f(x) + tVF(x) T Ax
Then
tVF(x)"Ax < f(x + tAx) — f(x) <0
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10-6: line search types |

o Why

1
)7
a6(0,2).

The use of 1/2 is for convergence though we won't
discuss details

@ Finite termination of backtracking line search. We
argue that 3t* > 0 such that

f(x + tAx) < f(x) + atVF(x)TAx,Vt € (0, t*)

Otherwise,

H{tk} —0
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10-6: line search types Il

such that
f(x + teAx) > f(x) + at VF(x)" Ax, Vk

im f(x + teAx) — f(x)
t,—0 tk
=Vf(x)TAx > aVFf(x)" Ax

However,
Vf(x)"Ax <0 and a € (0,1)

cause a contradiction
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@ Graphical interpretation: the tangent line passes
through (0, f(x)), so the equation is

y — f(x)

0 V(x)TAx

Because
Vi(x)"Ax <0,

we see that the line of

f(x) + atVF(x)T Ax
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is above that of

f(x) + tVF(x)T Ax
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@ Linear convergence. We consider exact line search;
proof for backtracking line search is more
complicated

@ S closed and bounded

V2f(x) X MI,Vx € S

Fy) < F60 + V60Tl —x) + 2y — P

Solve

2

min f(x) — tVF(x)"VF(x) + %Vf(x)TVf(x)
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f =

VAN §||—l

f(Xnext) < f(x—%Vf(x)) f(x)—ﬁVf(x)TVf(x)

The first inequality is from the fact that we use
exact line search

1
f(Xnext) — P* < f(x) — p* — ==V F(x)"VFf(x)
2M
From slide 10-4,

—[IVF)II? < —2m(f(x) — p)
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Hence

F(ee) =P < (1= 7)) = )
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@ Assume

k

v—1 v—1
X1:7( )k7 = )k7

PR T
_ | X
Vf(Xl, X2) = [’)/XJ

1
min 5((X1 — tx1)” + (e — tyx)?)

1
min S (E(1— € + 12(1 — 17)?)
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—x; (1= 1t) +5(1—ty)(—y) =0
X tF — VX tE =0

t(x +7°%3) = X¢ +7°%

—1

ik R e V(EE)*
X12 + 73X22 Y (V+1 )2k + '73(7+1)
B 272 B 2
P+ 149

X = xK — tVF(x¥) = [;2{3{(((11__,;2)]
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10-8 Il

k41 v—1y, 71 7—1k+1
X —
=G =0 )
k+1 v =1 27y
X - — - -
S = 7+1)( 1+7)
v—1 —1
= (- )( 1y — (L oykn
y+1" "1+~ 7+1

@ Why gradient is orghogonal to the tangent line of
the contour curve?
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Assume f(g(t)) is the countour with

g(0) = x

Then

0= f(g(t)) — 1(£(0))
0 — iim 1(&8(t)) — f(£(0))

t
=lim Vf(g(t))" Va(t)
=Vf(x)"Vg(0)
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where
x + tVg(0)

is the tangent line
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@ linear convergence: from slide 10-7
F(x) = p* < H(F() - p)

log(c“(f(x°) = p*)) = klog c + log(f(x°) — p*)

is a straight line. Note that now k is the x-axis
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@ (unnormalized) steepest descent direction:
Axg = ||VF(X) ||+ Axpsq

Here || - ||« is the dual norm

@ We didn't discuss much about dual norm, but we
can still explain some examples on 10-12
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o Euclidean: Ax,g is by solving

min  Vf'v
subject to  ||v]| =1

VITv =|Vf|||v| cosd = —||VF|| when cosh ==

V()
At = 157 ()]
IVFGIL = V7))
Vf(x)

V() +Bxnsa = HVf(X)H HVf( i = —Vf(x)
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@ Quadratic norm: Ax,sq is by solving

min Vv
subject to viPv=1

Now

|v]|p = VvTPv,

where P is symmetric positive definite
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o Let
w = PY?y

The optimization problem becomes

min VTP Y2y

w

subject to  ||w| =1
. —PY2Vf
Optlmal w = m
— P72V f

VITP1Vf
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_pivf
optimal v = Vi Axysg

VITPIVS

@ Dual norm

|z = |P 2|
Therefore
_ p-1
Axyg = VVFITP-IVf PvE
VFTP-1Vf
= —P'Vf
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@ Explanation of the figure:
—VF(x) " Dxusg = || — VF(x)|||| Axnsal| cos 0

|| = Vf(x)|| is a constant. From a point Ax,sg on

the boundary, the projected point on —V£(x)
indicates

|| Axpsql| cos @
In the figure, we see that the chosen Ax,sq has the
largest || Axqsd|| cos

@ We omit the discusssion of /-norm
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@ The two figures are by using two P matrices
@ The left one has faster convergence
@ Gradient descent after change of variables

X = Pl/zx,x = P12
min f(x) = min f(P~1/2x)
X X —aP Y2V, f(P71?%)
PY2x « PY2x — aP7Y2V, f(x)
X < x — aP7IV,f(x)
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f'(x)
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@ Solve
f'(x)=0
Fining the tangent line at x:
_f
Yy (Xk) _ f”(Xk)
X — Xk

Xi: the current iterate
Let y =0
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Fy) = F00+ VAT (y =) + 50— x) P (x)(y )

VF(y) = 0= Vf(x)+ V2f(x)(y — x)
y —x = =V?f(x)"VFf(x)

inf Fly) = f(x) — %w(x)Tv%(x)lw(x)

Fx) — inf F(y) = 2A(x)?

y
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Norm of the Newton step in the quadratic Hessian norm
Axyy = —V2F(x) 1VF(x)

AxTV2f(x)Axye = VF(x)T V2 (x)IVF(x) = A(x)?
Directional derivative in the Newton direction

f(x + tAxy) — f(x)
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Affine invariant

fy) = f(Ty) = f(x)

Assume T is an invertable square matrix. Then

Ay) = MTy)

Proof:

Vi(y) = TTVF(Ty)
VF(y) = TTV2F(Ty)T
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Ay)? = VF(y) 'V (y) 'Vi(y)
= VF(Ty) " TT VA (Ty) T TTTVF(Ty)
= VF(Ty) "V (Ty) 'VF(Ty)
= MTy)*
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Affine invariant

Dy = —V2F(y)'VE(y)
= —T 'V (Ty) 'VI(Ty)
= T_IAXnt

Note that

SO
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But how about line search
V?(Y)TAYnt
=VI(Ty) T TT *Axy
=VFf(x)" Axyt
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f(x) — f(x*)
< L|Vea)P  (from p10-4

1 4m4 1 I—k
LA G V!
—2m L2 (2)
2m3 ]. I—k+1
e =
Let
2m3
=T

Chih-Jen Lin (National Taiwar Optimization and Machine Learning 205 /228



.
10-20 I

log, e — 2% < log, ¢

271 > logy(eo/e)

/ Z k — 1 + |Og2 |Og2(€0/€)

K < f(x0) — p*
r
In at most
f(xg) — p*
% + log; log,(€o/€)
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iterations, we have
f(x) —f(x*) <e
The second term is almost a constant. For example, if

e~5-10 D¢,
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then

1
log, log, 51020
log,(1 + 19 log, 10)

log,(1 + 19 - 3.322)
log,(64) =6

Q

Q

Q
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@ On page 10-10, to reach
f(x¥) — p* =~ 1074,

150 iterations are needed

@ However, the cost per Newton iteration may be
much higher

@ Also for some applications we may not need a very
accurate solution

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 209 /228



-
10-29: implementation |

e If H is positive definite, then there exists unique L
such that
H=LL"

A(x) = (VF(x)V2F(x) 'V F(x))"/?
= (gL L) 2 =L g2
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10-30: example of dense Newton systems
with structure |

@b,‘(X,') "R — R
P1(x1)
Vf(x) = : + ATVo(Ax + b)
n(%n)
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10-30: example of dense Newton systems
with structure |l
1(x)
V3f(x) = + ATV23(Ax + b)A
U (Xn)
= D+ ATHA

Ho:pxp

method 2:

Ax=D—g—ATL,w)
LiAD Y(—g — ATLyw) = w
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10-30: example of dense Newton systems
with structure ||
(I +LJAD'ATLy)w = —L] AD g

Cost

Lo:pxp,A:pXxXn

ATLo: nx p,cost : O(np?)

(L§ A)YD (AT L) : O(p°n)
Note that Cholesky factorization of Hy costs

]'3 2
_ < n
P <p
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10-30: example of dense Newton systems
with structure IV

as
p<<n

Any problem fits into this framework? Logistic regression

/
. 1 T wl x.
_ —_y,W X;
rrun 2w w+C§_1Iog<1+e )

A= | :
.
X,
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10-30: example of dense Newton systems
with structure V

/
Yo(t) = € log(1 + et
i=1

o1 RN — R

This technique is useful if

#instances < #features
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@ For the constraint
Ax=b,A:pxn

we assume
p<n

That is,
#constraints < #variables

This is reasonable. Otherwise in general the
problem has a unique solution or is infeasible.
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e With p < n we can assume

rank(A) = p
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@ KKT matrix non-singular if and only if
Ax=0,x#0=x"Px >0

=
If the result is wrong, then KKT matrix is singular

- [)‘j = Osuch that

Px+ATv=0 (7)

Ax =0
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Case 1: x #0
x"Px +x"ATv = x"Px > 0 violates (7)
Case 2: x =0
ATv =0 and v # 0 violates that rank(A") = p,

where
A€ R"™P

That is, p columns of AT are linear independent and
hence rank(AT) < p
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=
If the result is wrong, dx such that

Ax=0,x#0

x"Px=0
Since P is PSD, P2 exists

(PY2)T(PY2x) =0 = PY’x=0= Px =0

3 H £ 0 such that [Z ‘g] m =0

contradicts the non-singularity
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@ KKT matrix non-singular if and only if
P+ATA>0
<«
If the result is wrong, the matrix is singular. That

is, it does not have full rank. Thus, 3 ﬁ] = 0 such

that
Px+ATv=0,Ax=0

We claim that
x#0
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Otherwise,
x=0,v#0
imply that
ATv =0,
a contradiction to
rank(AT) = p

That is, columns of A™'s p columns become
linlinear dependent. Then

xT(P+ATA)x =x"(=ATv) = —(Ax)Tv =0
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leads to a contradiction

=
If
P+ATA% 0
dx # 0 such that x"Px+x"ATAx <0
Because

P + AT A is symmetric positive semi-definite,
we have

3x # 0 such that x"Px +x"ATAx =0
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Because P and A’ A are both PSD,

Ax =0,x"Px =0

Then

is a solution of

a contradiction
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11-7: Newton decrement |

V2 (x)Axo + ATw = —VF(x)
Ax V2 (x)Axye + 0 = —Ax: VF(x) (8)

d
—f tAx,
dt (x + tAxw) o

= VF(x)"Axpy = —A(x)?

Note that
VE(x)T Axy <0

is from (8)
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Original
min  f(x)
subjectto Ax=b
Let
x= Ty
New

min  f(Ty) = z_‘(y)
y
subject to ATy = b = Ay,
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where _
A=AT
KKT system of the original one

"0 4]

New system
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11-8 IlI
TTVZf7(_Ty)T TTOAT] [V:VV] _ {—TTVOf(Ty)]

-1

x=1Ty=v=T "v,w=wis a solution

Let's omit the step size

y<y+v
Ty« Ty+Tv
v=Tv

X<+ X+v

Thus invariant
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