1-5: Least-squares I

- $A: k \times n$. Usually $k > n$

 otherwise easily the minimum is zero.

- Analytical solution:

 $$f(x) = (Ax - b)^T (Ax - b)$$
 $$= x^T A^T A x - 2 b^T A x + b^T b$$

 $$\nabla f(x) = 2 A^T A x - 2 A^T b = 0$$
Regularization, weights:

\[\frac{1}{2} \lambda x^T x + w_1 (Ax - b)_1^2 + \cdots + w_k (Ax - b)_k^2 \]
Convex hull is convex

\[x = \theta_1 x_1 + \cdots + \theta_k x_k \]
\[\bar{x} = \bar{\theta}_1 \bar{x}_1 + \cdots + \bar{\theta}_k \bar{x}_k \]

Then

\[\alpha x + (1 - \alpha)\bar{x} \]
\[= \alpha \theta_1 x_1 + \cdots + \alpha \theta_k x_k + \]
\[(1 - \alpha)\bar{\theta}_1 \bar{x}_1 + \cdots + (1 - \alpha)\bar{\theta}_k \bar{x}_k \]
Each coefficient is nonnegative and

\[\alpha \theta_1 + \cdots + \alpha \theta_k + (1 - \alpha) \bar{\theta}_1 + \cdots + (1 - \alpha) \bar{\theta}_k = \alpha + (1 - \alpha) = 1 \]
We prove that any

\[x = x_c + Au \text{ with } \|u\|_2 \leq 1 \]

satisfies

\[(x - x_c)^T P^{-1} (x - x_c) \leq 1 \]

Let

\[A = P^{1/2} \]

because \(P \) is symmetric positive definite. Then

\[u^T A^T P^{-1} Au = u^T P^{1/2} P^{-1} P^{1/2} u \leq 1. \]
\[S^n_+ \text{ is a convex cone. Let} \]
\[X_1, X_2 \in S^n_+ \]

For any \(\theta_1 \geq 0, \theta_2 \geq 0, \)

\[z^T (\theta_1 X_1 + \theta_2 X_2) z = \theta_1 z^T X_1 z + \theta_2 z^T X_2 z \geq 0 \]
Example:

\[
\begin{bmatrix}
x & y \\
y & z
\end{bmatrix} \in S^2_+
\]

is equivalent to

\[x \geq 0, z \geq 0, xz - y^2 \geq 0\]

If \(x > 0\) or \((z > 0)\) is fixed, we can see that

\[z \geq \frac{y^2}{x}\]

has a parabolic shape
When t is fixed,

$$\{(x_1, x_2) \mid -1 \leq x_1 \cos t + x_2 \cos 2t \leq 1\}$$

gives a region between two parallel lines.
This region is convex.
2-13: Affine Function I

- $f(S)$ is convex:

Let

$$f(x_1) \in f(S), \ f(x_2) \in f(S)$$

$$\alpha f(x_1) + (1 - \alpha) f(x_2)$$

$$= \alpha (Ax_1 + b) + (1 - \alpha)(Ax_2 + b)$$

$$= A(\alpha x_1 + (1 - \alpha)x_2) + b$$

$$\in f(S)$$
$f^{-1}(C)$ convex:

$x_1, x_2 \in f^{-1}(C)$

means that

$Ax_1 + b \in C, Ax_2 + b \in C$

Because C is convex,

\[
\alpha(Ax_1 + b) + (1 - \alpha)(Ax_2 + b) = A(\alpha x_1 + (1 - \alpha)x_2) + b \in C
\]

Thus

$\alpha x_1 + (1 - \alpha)x_2 \in f^{-1}(C)$
2-13: Affine Function III

- **Scaling:**
 \[\alpha S = \{ \alpha x \mid x \in S \} \]

- **Translation**
 \[S + a = \{ x + a \mid x \in S \} \]

- **Projection**
 \[T = \{ x_1 \in \mathbb{R}^m \mid (x_1, x_2) \in S, x_2 \in \mathbb{R}^n \}, \quad S \subseteq \mathbb{R}^m \times \mathbb{R}^n \]

- Scaling, translation, and projection are all affine functions
For example, for projection

\[f(x) = [I \ 0] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 0 \]

\(I\): identity matrix

Solution set of linear matrix inequality

\[C = \{ S \mid S \preceq 0 \} \text{ is convex} \]

\[f(x) = x_1 A_1 + \cdots + x_m A_m - B = Ax + b \]

\[f^{-1}(C) = \{ x \mid f(x) \preceq 0 \} \text{ is convex} \]
But this isn’t rigorous because of some problems in arguing

\[f(x) = Ax + b \]

A more formal explanation:

\[C = \{ s \in \mathbb{R}^{p^2} \mid \text{mat}(s) \in S^p \text{ and mat}(s) \preceq 0 \} \]

is convex

\[
\begin{align*}
 f(x) &= x_1 \text{vec}(A_1) + \cdots + x_m \text{vec}(A_m) - \text{vec}(B) \\
 &= \begin{bmatrix} \text{vec}(A_1) & \cdots & \text{vec}(A_m) \end{bmatrix} x + (-\text{vec}(B))
\end{align*}
\]
2-13: Affine Function VI

\[f^{-1}(C) = \{ x \mid \text{mat}(f(x)) \in S^p \text{ and } \text{mat}(f(x)) \preceq 0 \} \]

is convex

- Hyperbolic cone:

\[C = \{(z, t) \mid z^Tz \leq t^2, t \geq 0\} \]

is convex (by drawing a figure in 2 or 3 dimensional space)
We have that

\[f(x) = \begin{bmatrix} P^{1/2}x \\ c^T x \end{bmatrix} = \begin{bmatrix} P^{1/2} \\ c^T \end{bmatrix} x \]

is affine. Then

\[f^{-1}(C) = \{ x \mid f(x) \in C \} = \{ x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0 \} \]

is convex
Image convex: if S is convex, check if

$$\{ P(x, t) \mid (x, t) \in S \}$$

convex or not

Note that S is in the domain of P
Assume

\((x_1, t_1), (x_2, t_2) \in S\)

We hope

\[\alpha \frac{x_1}{t_1} + (1 - \alpha) \frac{x_2}{t_2} = P(A, B),\]

where

\((A, B) \in S\)
We have

\[
\alpha \frac{x_1}{t_1} + (1 - \alpha) \frac{x_2}{t_2} = \frac{\alpha t_2 x_1 + (1 - \alpha) t_1 x_2}{t_1 t_2} = \frac{\alpha t_2 x_1 + (1 - \alpha) t_1 x_2}{\alpha t_1 t_2 + (1 - \alpha) t_1 t_2}
\]

\[
= \frac{\alpha t_2}{\alpha t_2 + (1 - \alpha) t_1} x_1 + \frac{(1 - \alpha) t_1}{\alpha t_2 + (1 - \alpha) t_1} x_2
\]

\[
= \frac{\alpha t_2}{\alpha t_2 + (1 - \alpha) t_1} t_1 + \frac{(1 - \alpha) t_1}{\alpha t_2 + (1 - \alpha) t_1} t_2
\]
Let
\[\theta = \frac{\alpha t_2}{\alpha t_2 + (1 - \alpha) t_1} \]

We have
\[\frac{\theta x_1 + (1 - \theta)x_2}{\theta t_1 + (1 - \theta)t_2} = \frac{A}{B} \]

Further
\[(A, B) \in S \]

because
\[(x_1, t_1), (x_2, t_2) \in S \]
Perspective and linear-fractional function

and

S is convex

- Inverse image is convex
- Given C a convex set

$$P^{-1}(C) = \{(x, t) \mid P(x, t) = x/t \in C\}$$

is convex
Perspective and linear-fractional function

VI

- Let

\[(x_1, t_1) : \frac{x_1}{t_1} \in C\]
\[(x_2, t_2) : \frac{x_2}{t_2} \in C\]

Do we have

\[\theta(x_1, t_1) + (1 - \theta)(x_2, t_2) \in P^{-1}(C)?\]

That is,

\[\frac{\theta x_1 + (1 - \theta)x_2}{\theta t_1 + (1 - \theta)t_2} \in C?\]
Perspective and linear-fractional function

VII

Let

\[\frac{\theta x_1 + (1 - \theta)x_2}{\theta t_1 + (1 - \theta)t_2} = \alpha \frac{x_1}{t_1} + (1 - \alpha) \frac{x_2}{t_2}, \]

Earlier we had

\[\theta = \frac{\alpha t_2}{\alpha t_2 + (1 - \alpha)t_1} \]

Then

\[(\alpha(t_2 - t_1) + t_1)\theta = \alpha t_2 \]
\[t_1 \theta = \alpha t_2 - \alpha t_2 \theta + \alpha t_1 \theta \]

\[\alpha = \frac{t_1 \theta}{t_1 \theta + (1 - \theta)t_2} \]
2-16: Generalized inequalities I

- K contains no line:

$$\forall x \text{ with } x \in K \text{ and } -x \in K \Rightarrow x = 0$$

- Nonnegative orthant

Clearly all properties are satisfied
Positive semidefinite cone:
PD matrices are interior
Nonnegative polynomial on \([0, 1]\)
When \(n = 2\)

\[x_1 \geq -tx_2, \forall t \in [0, 1] \]

\(t = 1\)
2-16: Generalized inequalities III

\[t = 0 \]
\forall t \in [0, 1]

It really becomes a proper cone
Properties:

\[x \leq_K y, \ u \leq_K v \]

implies that

\[y - x \in K \]
\[v - u \in K \]

From the definition of a convex cone,

\[(y - x) + (v - u) \in K \]

Then

\[x + u \leq_K y + v \]
The minimum element

\[S \subseteq x_1 + K \]

A minimal element

\[(x_2 - K) \cap S = \{x_2\}\]
We consider a simplified situation and omit part of the proof.

Assume
\[\inf_{u \in C, v \in D} \| u - v \| > 0 \]

and minimum attained at \(c, d \)

We will show that

\[a \equiv d - c, \quad b \equiv \frac{\| d \|^2 - \| c \|^2}{2} \]

forms a separating hyperplane \(a^T x = b \)
2-19: Separating hyperplane theorem II

\[a^T x = \Delta_2 \quad b \quad \Delta_1 \]

\[a = d - c \]

\[\Delta_1 = (d - c)^T d, \quad \Delta_2 = (d - c)^T c \]

\[b = \frac{\Delta_1 + \Delta_2}{2} = \frac{d^T d - c^T c}{2} \]
Assume the result is wrong so there is $u \in D$ such that

$$a^T u - b < 0$$

We will derive a point u' in D but it is closer to c than d. That is,

$$\|u' - c\| < \|d - c\|$$

Then we have a contradiction

- The concept
2-19: Separating hyperplane theorem IV

\[a^T x = b \]

\[a^T u - b = (d - c)^T u - \frac{d^T d - c^T c}{2} < 0 \]

implies that

\[(d - c)^T (u - d) + \frac{1}{2} \| d - c \|^2 < 0 \]
2-19: Separating hyperplane theorem V

\[
\frac{d}{dt} \left\| d + t(u - d) - c \right\|^2 \bigg|_{t=0} \\
= 2(d + t(u - d) - c)^T (u - d) \bigg|_{t=0} \\
= 2(d - c)^T (u - d) < 0
\]

There exists a small \(t \in (0, 1) \) such that

\[
\left\| d + t(u - d) - c \right\| < \left\| d - c \right\|
\]

However,

\[
d + t(u - d) \in D,
\]

so there is a contradiction
Strict separation

\[C \quad \quad D \]

They are disjoint convex sets. However, no \(a, b \) such that

\[a^T x < b, \quad \forall x \in C \quad \text{and} \quad a^T x > b, \quad \forall x \in D \]
Case 1: C has an interior region

- Consider 2 sets:

 interior of C versus $\{x_0\}$, where x_0 is any boundary point.

- If C is convex, then interior of C is also convex.

- Then both sets are convex.

- We can apply results in slide 2-19 so that there exists a such that

 $$a^T x \leq a^T x_0, \forall x \in \text{interior of } C$$
Then for all boundary point x we also have

$$a^T x \leq a^T x_0$$

because any boundary point is the limit of interior points.

Case 2: C has no interior region

- In this situation, C is like a line in \mathbb{R}^3 (so no interior). Then of course it has a supporting hyperplane.
- We don’t do a rigorous proof here.
3-3: Examples on \mathbb{R}

- Example: $x^3, x \geq 0$

- Example: $x^{-1}, x > 0$
Example: \(x^{1/2}, x \geq 0 \)
$A, X \in \mathbb{R}^{m \times n}$

$$\text{tr}(A^T X) = \sum_j (A^T X)_{jj}$$

$$= \sum_j \sum_i A_{ji} X_{ij} = \sum_j \sum_i A_{ij} X_{ij}$$
An open set: for any x, there is a ball covering x such that this ball is in the set.

Global underestimator:

\[
\frac{z - f(x)}{y - x} = f'(x)
\]

\[
z = f(x) + f'(x)(y - x)
\]
Because domain f is convex, for all $0 < t \leq 1$, $x + t(y - x) \in \text{domain } f$

$$f(x + t(y - x)) \leq (1 - t)f(x) + tf(y)$$

$$f(y) \geq f(x) + \frac{f(x + t(y - x)) - f(x)}{t}$$

when $t \to 0$,

$$f(y) \geq f(x) + \nabla f(x)^T(y - x)$$
For any $0 \leq \theta \leq 1$,

$$z = \theta x + (1 - \theta)y$$

$$f(x) \geq f(z) + \nabla f(z)^T (x - z)$$

$$= f(z) + \nabla f(z)^T (1 - \theta)(x - y)$$

$$f(y) \geq f(z) + \nabla f(z)^T (y - z)$$

$$= f(z) + \nabla f(z)^T \theta(y - x)$$

$$\theta f(x) + (1 - \theta)f(y) \geq f(z)$$
First-order condition for strictly convex function:

\[f \text{ is strictly convex if and only if } \]

\[f(y) > f(x) + \nabla f(x)^T (y - x) \]

\[\iff \text{ it's easy by directly modifying } \geq \text{ to } > \]

\[f(x) > f(z) + \nabla f(z)^T (x - z) \]
\[= f(z) + \nabla f(z)^T (1 - \theta)(x - y) \]

\[f(y) > f(z) + \nabla f(z)^T (y - z) = f(z) + \nabla f(z)^T \theta(y - x) \]
⇒: Assume the result is wrong. From the 1st-order condition of a convex function, \(\exists x, y\) such that \(x \neq y\) and

\[
\nabla f(x)^T(y - x) = f(y) - f(x)
\]

(1)

For this \((x, y)\), from the strict convexity

\[
f(x + t(y - x)) - f(x) < tf(y) - tf(x)
\]

\[= \nabla f(x)^T t(y - x), \forall t \in (0, 1)\]
Therefore,
\[f(x + t(y - x)) < f(x) + \nabla f(x)^T t(y - x), \forall t \in (0, 1) \]

However, this contradicts the first-order condition:
\[f(x + t(y - x)) \geq f(x) + \nabla f(x)^T t(y - x), \forall t \in (0, 1) \]

This proof was given by a student of this course before.
Proof of the 2nd-order condition:
We consider only the simpler condition of \(n = 1 \)

\[
\begin{align*}
\lim_{t \to 0} 2 \frac{f(x + t) - f(x) - f'(x)t}{t^2} &= \lim_{t \to 0} \frac{2(f'(x + t) - f'(x))}{2t} \\
&= f''(x) \geq 0
\end{align*}
\]
Second-order condition II

“⇐”

\[
\begin{align*}
f(x + t) &= f(x) + f'(x)t + \frac{1}{2}f''(\bar{x})t^2 \\
&\geq f(x) + f'(x)t
\end{align*}
\]

by 1st-order condition

The extension to general \(n \) is straightforward

If \(\nabla^2 f(x) \succeq 0 \), then \(f \) is strictly convex
Using 1st-order condition for strictly convex function:

\[
f(y) = f(x) + \nabla f(x)^T(y - x) + \frac{1}{2}(y - x)^T \nabla^2 f(\bar{x})(y - x)
\]

\[
> f(x) + \nabla f(x)^T(y - x)
\]

- It’s possible that \(f \) is strictly convex but

\[
\nabla^2 f(x) \not\equiv 0
\]
3-8: Second-order condition IV

Example:

\[f(x) = x^4 \]

Details omitted
Quadratic-over-linear

\[
\frac{\partial f}{\partial x} = \frac{2x}{y}, \quad \frac{\partial f}{\partial y} = -\frac{x^2}{y^2}
\]

\[
\frac{\partial^2 f}{\partial x \partial x} = \frac{2}{y'}, \quad \frac{\partial^2 f}{\partial x \partial y} = -\frac{2x}{y^2}, \quad \frac{\partial^2 f}{\partial y \partial y} = \frac{2x^2}{y^3},
\]

\[
\frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y & -x \end{bmatrix} = 2 \begin{bmatrix} \frac{1}{y} & -\frac{x}{y^2} \\ -\frac{x}{y^2} & \frac{x^2}{y^3} \end{bmatrix}
\]
\[f(x) = \log \sum_k \exp x_k \]

\[\nabla f(x) = \begin{bmatrix} e^{x_1} \\ \sum_k e^{x_k} \\ \vdots \\ e^{x_n} \\ \sum_k e^{x_k} \end{bmatrix} \]

\[\nabla^2_{ii} f = \frac{(\sum_k e^{x_k}) e^{x_i} - e^{x_i} e^{x_i}}{(\sum_k e^{x_k})^2}, \quad \nabla^2_{ij} f = -\frac{e^{x_i} e^{x_j}}{(\sum_k e^{x_k})^2}, \quad i \neq j \]

Note that if

\[z_k = \exp x_k \]
then

\[(zz^T)_{ij} = z_i(z^T)_j = z_i z_j\]

Cauchy-Schwarz inequality

\[\left(a_1 b_1 + \cdots + a_n b_n \right)^2 \leq (a_1^2 + \cdots + a_n^2)(b_1^2 + \cdots + b_n^2)\]

\[a_k = v_k \sqrt{z_k}, \quad b_k = \sqrt{z_k}\]

Note that

\[z_k > 0\]
3-12: Jensen’s inequality I

- **General form**

\[f\left(\int p(z)z\,dz\right) \leq \int p(z)f(z)\,dz \]

- **Discrete situation**

\[f\left(\sum p_i z_i\right) \leq \sum p_i f(z_i), \quad \sum p_i = 1 \]
3-12: Jensen’s inequality II

Proof:

\[f(p_1 z_1 + p_2 z_2 + p_3 z_3) \]
\[\leq (1 - p_3) \left(f \left(\frac{p_1 z_1 + p_2 z_2}{1 - p_3} \right) \right) + p_3 f(z_3) \]
\[\leq (1 - p_3) \left(\frac{p_1}{1 - p_3} f(z_1) + \frac{p_2}{1 - p_3} f(z_2) \right) + p_3 f(z_3) \]
\[= p_1 f(z_1) + p_2 f(z_2) + p_3 f(z_3) \]

Note that

\[\frac{p_1}{1 - p_3} + \frac{p_2}{1 - p_3} = \frac{1 - p_3}{1 - p_3} = 1 \]
Composition with affine function:

We know

\[f(x) \text{ is convex} \]

Is

\[g(x) = f(Ax + b) \]
3-14: Positive weighted sum & composition with affine function II

Convex?

\[
g((1 - \alpha)x_1 + \alpha x_2) = f(A((1 - \alpha)x_1 + \alpha x_2) + b) = f((1 - \alpha)(Ax_1 + b) + \alpha(Ax_2 + b)) \leq (1 - \alpha)f(Ax_1 + b) + \alpha f(Ax_2 + b) = (1 - \alpha)g(x_1) + \alpha g(x_2)
\]
3-15: Pointwise maximum I

Proof of the convexity

\[
f((1 - \alpha)x_1 + \alpha x_2) \\
= \max(f_1((1 - \alpha)x_1 + \alpha x_2), \ldots, f_m((1 - \alpha)x_1 + \alpha x_2)) \\
\leq \max((1 - \alpha)f_1(x_1) + \alpha f_1(x_2), \ldots, \\
(1 - \alpha)f_m(x_1) + \alpha f_m(x_2)) \\
\leq (1 - \alpha) \max(f_1(x_1), \ldots, f_m(x_1)) + \\
\alpha \max(f_1(x_2), \ldots, f_m(x_2)) \\
\leq (1 - \alpha)f(x_1) + \alpha f(x_2)
\]
For

\[f(x) = x_{[1]} + \cdots + x_{[r]} \]

consider all \(\binom{n}{r} \) combinations

combinations
The proof is similar to pointwise maximum.

Support function of a set C:
When y is fixed,

$$f(x, y) = y^T x$$

is linear (convex) in x.

Maximum eigenvalues of symmetric matrix

$$f(X, y) = y^T X y$$

is a linear function of X when y is fixed.
Proof:

Let $\epsilon > 0$. $\exists y_1, y_2 \in C$ such that

$$f(x_1, y_1) \leq g(x_1) + \epsilon$$

$$f(x_2, y_2) \leq g(x_2) + \epsilon$$

$$g(\theta x_1 + (1 - \theta)x_2) = \inf_{y \in C} f(\theta x_1 + (1 - \theta)x_2, y)$$

$$\leq f(\theta x_1 + (1 - \theta)x_2, \theta y_1 + (1 - \theta)y_2)$$

$$\leq \theta f(x_1, y_1) + (1 - \theta)f(x_2, y_2)$$

$$\leq \theta g(x_1) + (1 - \theta)g(x_2) + \epsilon$$
Note that the first inequality use the property that \(C \) is convex to have

\[\theta y_1 + (1 - \theta) y_2 \in C \]

Because the above inequality holds for all \(\epsilon > 0 \),

\[g(\theta x_1 + (1 - \theta) x_2) \leq \theta g(x_1) + (1 - \theta) g(x_2) \]
first example:
The goal is to prove

\[A - BC^{-1}B^T \succeq 0 \]

Instead of a direct proof, here we use the property in this slide. First we have that \(f(x, y) \) is convex in \((x, y)\) because

\[
\begin{bmatrix}
A & B \\
B^T & C
\end{bmatrix} \succeq 0
\]

Consider

\[
\min_y f(x, y)
\]
Because

\[C \succ 0, \]

the minimum occurs at

\[2Cy + 2B^T x = 0 \]

\[y = -C^{-1}B^T x \]

Then

\[g(x) = x^T Ax - 2x^T BC^{-1} Bx + x^T BC^{-1} CC^{-1} B^T x \]

\[= x^T (A - BC^{-1} B^T)x \]
is convex. The second-order condition implies that

$$A - BC^{-1}B^T \succeq 0$$
This function is useful later

When y is fixed, maximum happens at

$$y = f'(x)$$ \hspace{1cm} (2)$$

by taking the derivative on x
Explanation of the figure: when y is fixed

$$z = xy$$

is a straight line passing through the origin, where y is the slope of the line. Check under which x, yx and $f(x)$ have the largest distance.

From the figure, the largest distance happens when (2) holds.
3-21: the conjugate function III

About the point

$$(0, -f^*(y))$$

The tangent line is

$$\frac{z - f(x_0)}{x - x_0} = f'(x_0)$$

where x_0 is the point satisfying

$$y = f'(x_0)$$

When $x = 0$,

$$z = -x_0 f'(x_0) + f(x_0) = -x_0 y + f(x_0) = -f^*(y)$$
3-21: the conjugate function IV

- f^* is convex: Given x,

$$y^T x - f(x)$$

is linear (convex) in y. Then we apply the property of pointwise supremum.
negative logarithm

\[f(x) = -\log x \]

\[\frac{\partial}{\partial x} (xy + \log x) = y + \frac{1}{x} = 0 \]

If \(y < 0 \), the picture of \(xy + \log x \)
Then

\[xy + \log x = -1 - \log(-y) \]
3-22: examples III

- strictly convex quadratic

\[Qx = y, \ x = Q^{-1}y \]

\[y^T x - \frac{1}{2} x^T Qx \]

\[= y^T Q^{-1} y - \frac{1}{2} y^T Q^{-1} QQ^{-1} y \]

\[= \frac{1}{2} y^T Q^{-1} y \]
Figure on slide:

\[S_\alpha = [a, b], \quad S_\beta = (\neg \infty, c] \]

Both are convex

The figure is an example showing that quasi convex may not be convex
3-26: properties of quasiconvex functions

- Modified Jensen inequality:
 \(f \) quasiconvex if and only if
 \[
 f(\theta x + (1-\theta)y) \leq \max\{f(x), f(y)\}, \forall x, y, \theta \in [0, 1].
 \]

- \(\Rightarrow \) Let
 \[
 \Delta = \max\{f(x), f(y)\}
 \]
 \(S_\Delta \) is convex
 \[
 x \in S_\Delta, y \in S_\Delta
 \]
 \[
 \theta x + (1-\theta)y \in S_\Delta
 \]
3-26: properties of quasiconvex functions

\[f(\theta x + (1 - \theta)y) \leq \Delta \]

and the result is obtained

\[\iff \text{If results are wrong, there exists } \alpha \text{ such that } S_\alpha \text{ is not convex.} \]

\[\exists x, y, \theta \text{ with } x, y \in S_\alpha, \theta \in [0, 1] \text{ such that} \]

\[\theta x + (1 - \theta)y \notin S_\alpha \]
Then

\[f(\theta x + (1 - \theta) y) > \alpha \geq \max\{f(x), f(y)\} \]

This violates the assumption

- First-order condition (this is exercise 3.43):
3-26: properties of quasiconvex functions

IV

“⇒”

\[f((1 - t)x + ty) \leq \max(f(x), f(y)) = f(x) \]

\[f(x + t(y - x)) - f(x) \leq 0 \]

\[\lim_{t \to 0} \frac{f(x + t(y - x)) - f(x)}{t} = \nabla f(x)^T (y - x) \leq 0 \]
3-26: properties of quasiconvex functions

⇐: If results are wrong, there exists α such that S_α is not convex.

$$\exists x, y, \theta \text{ with } x, y \in S_\alpha, \theta \in [0, 1] \text{ such that}$$

$$\theta x + (1 - \theta)y \notin S_\alpha$$

Then

$$f(\theta x + (1 - \theta)y) > \alpha \geq \max\{f(x), f(y)\} \quad (3)$$
Because f is differentiable, it is continuous. Without loss of generality, we have

$$f(z) \geq f(x), f(y), \forall z \text{ between } x \text{ and } y$$

$$z = x + \theta(y - x), \theta \in (0, 1)$$

$$\nabla f(z)^T(-\theta(y - x)) \leq 0$$

$$\nabla f(z)^T(y - x - \theta(y - x)) \leq 0$$

Then

$$\nabla f(z)^T(y - x) = 0, \forall \theta \in (0, 1)$$
\(f(x + \theta(y - x)) = f(x) + \nabla f(t)^T \theta(y - x) = f(x), \forall \theta \in [0, 1) \)

This contradicts (3).
Powers:

$$\log(x^a) = a \log x$$

$$\log x$$ is concave

Probability densities:

$$\log f(x) = -\frac{1}{2}(x - \bar{x})^T \Sigma^{-1} (x - \bar{x}) + \text{constant}$$

$$\Sigma^{-1}$$ is positive definite. Thus $$\log f(x)$$ is concave
Cumulative Gaussian distribution

\[\log \Phi(x) = \log \int_{-\infty}^{x} e^{-u^2/2} \, du \]

\[\frac{d}{dx} \log \Phi(x) = \frac{e^{-x^2/2}}{\int_{-\infty}^{x} e^{-u^2/2} \, du} \]

\[\frac{d^2}{d^2x} \log \Phi(x) = \frac{(\int_{-\infty}^{x} e^{-u^2/2} \, du)e^{-x^2/2}(-x) - e^{-x^2/2}e^{-x^2/2}}{(\int_{-\infty}^{x} e^{-u^2/2} \, du)^2} \]
Need to prove that

\[
\left(\int_{-\infty}^{x} e^{-u^{2}/2} \, du \right) x + e^{-x^{2}/2} > 0
\]

Because

\[x \geq u \text{ for all } u \in (-\infty, x],\]
we have

\[
\left(\int_{-\infty}^{x} e^{-u^2/2} \, du \right) x + e^{-x^2/2} \\
= \int_{-\infty}^{x} xe^{-u^2/2} \, du + e^{-x^2/2} \\
\geq \int_{-\infty}^{x} ue^{-u^2/2} \, du + e^{-x^2/2} \\
= - e^{-u^2/2} \bigg|_{-\infty}^{x} + e^{-x^2/2} \\
= - e^{-x^2/2} + e^{-x^2/2} = 0
\]
This proof was given by a student (and polished by another student) of this course before
4-3: Optimal and locally optimal points I

- $f_0(x) = 1/x$

- $f_0(x) = x \log x$
4-3: Optimal and locally optimal points II

\[f_0'(x) = 1 + \log x = 0 \]

\[x = e^{-1} = 1/e \]

\[f_0(x) = x^3 - 3x \]
$f_0'(x) = 3x^2 - 3 = 0$

$x = \pm 1$
4-9: Optimality criterion for differentiable f_0

\iff: easy

From first-order condition

$$f_0(y) \geq f_0(x) + \nabla f_0(x)^T (y - x)$$

Together with

$$\nabla f_0(x)^T (y - x) \geq 0$$

we have

$$f_0(y) \geq f_0(x), \text{ for all feasible } y$$
4-9: Optimality criterion for differentiable f_0

$⇒$ Assume the result is wrong. Then

$$\nabla f_0(x)^T (y - x) < 0$$

Let

$$z(t) = ty + (1 - t)x$$

$$\frac{d}{dt} f_0(z(t)) = \nabla f_0(z(t))^T (y - x)$$

$$\left. \frac{d}{dt} f_0(z(t)) \right|_{t=0} = \nabla f_0(x)^T (y - x) < 0$$
There exists t such that

$$f_0(z(t)) < f_0(x)$$

Note that

$$z(t)$$

is feasible because

$$f_i(z(t)) \leq tf_i(x) + (1 - t)f_i(y) \leq 0$$

and

$$A(tx + (1-t)y) = tAx + (1-t)Ay = tb + (1-b)b = b$$
4-9: Optimality criterion for differentiable f_0 IV
Unconstrained problem:
Let
\[y = x - t \nabla f_0(x) \]
It is feasible (unconstrained problem). Optimality condition implies
\[\nabla f_0(x)^T (y - x) = -t \| \nabla f_0(x) \|^2 \geq 0 \]
Thus
\[\nabla f_0(x) = 0 \]
Equality constrained problem
Easy. For any feasible y,

$$Ay = b$$

$$\nabla f_0(x)(y-x) = -\nu^T A(y-x) = -\nu^T (b-b) = 0 \geq 0$$

So x is optimal

\Rightarrow: more complicated. We only do a rough explanation
From optimality condition

\[\nabla f_0(x)^T \nu = \nabla f_0(x)^T ((x + \nu) - x) \geq 0, \forall \nu \in \mathcal{N}(A) \]

\(\mathcal{N}(A) \) is a subspace in 2-D. Thus

\[\nu \in \mathcal{N}(A) \Rightarrow -\nu \in \mathcal{N}(A) \]
∇f_0
We have

\[\nabla f_0(x)^T \nu = 0, \forall \nu \in N(A) \]

\[\nabla f_0(x) \perp N(A), \nabla f_0(x) \in R(A^T) \]

\[\Rightarrow \exists \nu \text{ such that } \nabla f_0(x) + A^T \nu = 0 \]

- Minimization over nonnegative orthant
 \[\Leftarrow \text{ Easy} \]
For any $y \succeq 0$,

$$\nabla_i f_0(x)(y_i - x_i) = \begin{cases}
\nabla_i f_0(x)y_i \geq 0 & \text{if } x_i = 0 \\
0 & \text{if } x_i > 0.
\end{cases}$$

Therefore,

$$\nabla f_0(x)^T(y - x) \geq 0$$

and

x is optimal.
If \(x_i = 0 \), we claim

\[\nabla_i f_0(x) \geq 0 \]

Otherwise,

\[\nabla_i f_0(x) < 0 \]

Let

\[y = x \text{ except } y_i \to \infty \]

\[\nabla f_0(x)^T (y - x) = \nabla_i f_0(x)(y_i - x_i) \to -\infty \]

This violates the optimality condition.
If $x_i > 0$, we claim

$$\nabla_i f_0(x) = 0$$

Otherwise, assume

$$\nabla_i f_0(x) > 0$$

Consider

$$y = x \text{ except } y_i = x_i / 2 > 0$$
It is feasible. Then
\[\nabla f_0(x)^T (y - x) = \nabla_i f_0(x)(y_i - x_i) = -\nabla_i f_0(x)x_i/2 < 0 \]
violates the optimality condition. The situation for
\[\nabla_i f_0(x) < 0 \]
is similar
\(\bar{c} \equiv E(C) \)

\[\Sigma \equiv E_C((C - \bar{c})(C - \bar{c})) \]

\[\text{Var}(C^T x) = E_C((C^T x - \bar{c}^T x)(C^T x - \bar{c}^T x)) \]

\[= E_C(x^T (C - \bar{c})(C - \bar{c})^T x) \]

\[= x^T \Sigma x \]
Cone was defined on slide 2-8

\[\{(x, t) \mid \|x\| \leq t\} \]
4-35: generalized inequality constraint

- $f_i \in \mathbb{R}^n \rightarrow \mathbb{R}^{k_i}$ K_i-convex:

 $$f_i(\theta x + (1 - \theta)y) \preceq_{K_i} \theta f_i(x) + (1 - \theta)f_i(y)$$

- See page 3-31
4-37: LP and SOCP as SDP I

- LP and equivalent SDP

\[
Ax = \begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{bmatrix} \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
\]

\[
x_1 \begin{bmatrix}
a_{11} \\
\vdots \\
a_{m1}
\end{bmatrix} + \cdots + x_n \begin{bmatrix}
a_{1n} \\
\vdots \\
a_{mn}
\end{bmatrix} - \begin{bmatrix}
b_1 \\
\vdots \\
b_m
\end{bmatrix} \preceq 0
\]
4-37: LP and SOCP as SDP II

- For SOCP and SDP we will use results in 4-39:

\[
\begin{bmatrix}
tI_{p \times p} & A_{p \times q} \\
A^T & tl_{q \times q}
\end{bmatrix} \succeq 0 \iff A^T A \preceq t^2 I_{q \times q}, \quad t \geq 0
\]

- Now

\[
p = m, \quad q = 1
\]

\[
A = A_i x + b_i, \quad t = c_i^T x + d_i
\]

\[
\|A_i x + b_i\|^2 \leq (c_i^T x + d_i)^2, \quad c_i^T x + d_i \geq 0
\]

- Thus

\[
\|A_i x + b_i\| \leq c_i^T x + d_i
\]
Following 4-38, we have the following equivalent problem

\[
\begin{align*}
\min & \quad t \\
\text{subject to} & \quad \|A\|_2 \leq t \\
\end{align*}
\]

We then use

\[
\|A\|_2 \leq t \iff A^T A \preceq t^2 I, t \geq 0 \\
\iff \begin{bmatrix} tl & A \\ A^T & tl \end{bmatrix} \succeq 0
\]
to have the SDP

\[
\begin{align*}
\text{min} & \quad t \\
\text{subject to} & \quad \begin{bmatrix}
 tl & A(x) \\
 A(x)^T & tl
\end{bmatrix} \succeq 0
\end{align*}
\]

Next we prove

\[
\begin{bmatrix}
 tl_{p \times p} & A_{p \times q} \\
 A^T & tl_{q \times q}
\end{bmatrix} \succeq 0 \iff A^T A \preceq t^2 I_{q \times q}, \ t \geq 0
\]
⇒ we immediately have

\[t \geq 0 \]

If \(t > 0 \),

\[
\begin{bmatrix}
-\mathbf{v}^T \mathbf{A}^T & t \mathbf{v}^T
\end{bmatrix}
\begin{bmatrix}
\mathbf{t} \mathbf{I}_{p \times p} & \mathbf{A}_{p \times q} \\
\mathbf{A}^T & t \mathbf{I}_{q \times q}
\end{bmatrix}
\begin{bmatrix}
-\mathbf{A} \mathbf{v} \\
t \mathbf{v}
\end{bmatrix}
= \begin{bmatrix}
-\mathbf{v}^T \mathbf{A}^T & t \mathbf{v}^T
\end{bmatrix}
\begin{bmatrix}
-t \mathbf{A} \mathbf{v} + t \mathbf{A} \mathbf{v} \\
-\mathbf{A}^T \mathbf{A} \mathbf{v} + t^2 \mathbf{v}
\end{bmatrix}
= t(t^2 \mathbf{v}^T \mathbf{v} - \mathbf{v}^T \mathbf{A}^T \mathbf{A} \mathbf{v}) \geq 0
\]

\[
\mathbf{v}^T (t^2 \mathbf{I} - \mathbf{A}^T \mathbf{A}) \mathbf{v} \geq 0, \forall \mathbf{v}
\]
and hence
\[t^2 I - A^T A \succeq 0 \]

If \(t = 0 \)

\[
\begin{bmatrix}
-v^T A^T & v^T
\end{bmatrix}
\begin{bmatrix}
A & 0
\end{bmatrix}
\begin{bmatrix}
-Av \\
v
\end{bmatrix}
= \begin{bmatrix}
-v^T A^T & v^T
\end{bmatrix}
\begin{bmatrix}
Av \\
-A^T Av
\end{bmatrix}
= -2v^T A^T Av \geq 0, \forall v
\]

Therefore
\[A^T A \preceq 0 \]
Consider

\[
\begin{bmatrix}
u^T \\
v^T
\end{bmatrix}
\begin{bmatrix}
tl & A \\
A^T & tl
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= \begin{bmatrix}
u^T \\
v^T
\end{bmatrix}
\begin{bmatrix}
tu + Av \\
A^T u + tv
\end{bmatrix}
= tu^T u + 2v^T A^T u + tv^T v
\]

We hope to have

\[
tu^T u + 2v^T A^T u + tv^T v \geq 0, \forall (u, v)
\]
If $t > 0$

$$\min_u tu^T u + 2v^T A^T u + tv^T v$$

has optimum at

$$u = \frac{-Av}{t}$$

We have

$$tu^T u + 2v^T A^T u + tv^T v$$

$$= tv^T v - \frac{v^T A^T A v}{t}$$

$$= \frac{1}{t} v^T (t^2 I - A^T A) v \geq 0.$$
4-39: matrix norm minimization VII

Hence

\[
\begin{bmatrix}
 tl & A \\
 A^T & tl
\end{bmatrix} \succeq 0
\]

If \(t = 0 \)

\[
A^T A \preceq 0
\]

\[
v^T A^T A v \leq 0, \quad v^T A^T A v = \| A v \|^2 = 0
\]

Thus

\[
A v = 0, \forall v
\]

\[
\begin{bmatrix}
 u^T & v^T
\end{bmatrix}
\begin{bmatrix}
 0 & A \\
 A^T & 0
\end{bmatrix}
\begin{bmatrix}
 u \\
 v
\end{bmatrix}
= \begin{bmatrix}
 u^T & v^T
\end{bmatrix}
\begin{bmatrix}
 0 \\
 A^T u
\end{bmatrix} = 0 \geq 0
\]
Thus

\[
\begin{bmatrix}
0 & A \\
A^T & 0
\end{bmatrix} \preceq 0
\]
Though

\[f_0(x) \text{ is a vector} \]

note that

\[f_i(x) \text{ is still } \mathbb{R}^n \rightarrow \mathbb{R}^1 \]

\(K \)-convex

See 3-31 though we didn’t discuss it earlier
Optimal

\[O \subseteq \{x\} + K \]

Pareto optimal

\[(x - K) \cap O = \{x\}\]
Note that g is concave no matter if the original problem is convex or not

$$f_0(x) + \sum \lambda_i f_i(x) + \sum \nu_i h_i(x)$$

is convex (linear) in λ, ν for each x
Use pointwise supremum on 3-16

$$\sup_{x \in D}(-f_0(x) - \sum \lambda_i f_i(x) - \sum \nu_i h_i(x))$$

is convex. Hence

$$\inf(f_0(x) + \sum \lambda_i f_i(x) + \sum \nu_i h_i(x))$$

is concave. Note that

$$- \sup(- \cdots) = - \text{convex}$$

$$= \inf(\cdots) = \text{concave}$$
5-8: Lagrange dual and conjugate function

\[f_0^*(-A^T \lambda - c^T \nu) = \sup_{x} ((-A^T \lambda - c^T \nu)^T x - f_0(x)) = -\inf_{x} (f_0(x) + (A^T \lambda + c^T \nu)^T x) \]
We don’t discuss the SDP problem on this slide because we omitted 5-7
5-11: Slater’s constraint qualification I

- We omit the proof because of no time
- “linear inequality do not need to hold with strict inequality”: for linear inequalities we DO NOT need constraint qualification
- We will see some explanation later
If we have only linear constraints, then constraint qualification holds.
5-15: geometric interpretation

- Explanation of $g(\lambda)$: when λ is fixed

\[\lambda u + t = \Delta \]

is a line. We lower Δ until it touches the boundary of G.

The Δ value then becomes $g(\lambda)$.

- When

\[u = 0 \Rightarrow t = \Delta \]

so we see the point marked as $g(\lambda)$ on t-axis.
We have $\lambda \geq 0$, so

$$\lambda u + t = \Delta$$

must be like

rather than
Explanation of p^*:
In G, only points satisfying

$$u \leq 0$$

are feasible.
We do not discuss a formal proof of Slater condition \Rightarrow strong duality. Instead, we explain this result by figures.

Reason of using A: G may not be convex.

Example:

$$\min x^2$$
subject to $x + 2 \leq 0$
This is a convex optimization problem

\[G = \{(x + 2, x^2) \mid x \in \mathbb{R}\} \]

is only a quadratic curve
The curve is not convex

- However, A is convex
Primal problem:

\[x = -2 \]

optimal objective value = 4

Dual problem:

\[g(\lambda) = \min_x x^2 + \lambda(x + 2) \]

\[x = -\lambda/2 \]

\[\max_{\lambda \geq 0} -\frac{\lambda^2}{4} + 2\lambda \]

optimal \(\lambda = 4 \)
optimal objective value \(= -\frac{16}{4} + 8 = 4 \)

Proving that \(A \) is convex

\((u_1, t_1) \in A, (u_2, t_2) \in A\)

\(\exists x_1, x_2 \text{ such that} \)

\(f_1(x_1) \leq u_1, f_0(x_1) \leq t_1 \)

\(f_1(x_2) \leq u_2, f_0(x_2) \leq t_2 \)

Consider

\(x = \theta x_1 + (1 - \theta)x_2 \)
We have

\[f_1(x) \leq \theta u_1 + (1 - \theta) u_2 \]

\[f_0(x) \leq \theta t_1 + (1 - \theta) t_2 \]

So

\[
\begin{bmatrix} u \\ t \end{bmatrix} = \theta \begin{bmatrix} u_1 \\ t_1 \end{bmatrix} + (1 - \theta) \begin{bmatrix} u_2 \\ t_2 \end{bmatrix} \in A
\]

- Note that we have

 Slater condition \(\Rightarrow \) strong duality

However, it’s possible that Slater condition doesn’t hold but strong duality holds
Example from exercise 5.22:

$$\min x$$

subject to $$x^2 \leq 0$$

Slater condition doesn’t hold because no $$x$$ satisfies $$x^2 < 0$$

$$G = \{(x^2, x) \mid x \in R\}$$
There is only one feasible point $(0, 0)$
\[g(\lambda) = \min_x x + x^2 \lambda \]

\[x = \begin{cases}
-1/(2\lambda) & \text{if } \lambda > 0 \\
-\infty & \text{if } \lambda = 0
\end{cases} \]

Dual problem

\[\max_{\lambda \geq 0} -1/(4\lambda) \]

\[\lambda \to \infty, \text{ objective value } \to 0 \]

\[d^* = 0, \ p^* = 0 \]

Strong duality holds
In deriving the inequality we use

\[h_i(x^*) = 0 \text{ and } f_i(x^*) \leq 0 \]

Complementary slackness

compare the earlier results in 4-10
For the problem on p5-16, neither slater condition nor KKT condition holds.

\[1 \neq \lambda_0 \]

Therefore, for convex problems,

\[\text{KKT} \implies \text{optimality} \]

but not vice versa.

Next we explain why for linear constraints we don’t need constraint qualification.
Consider the situation of inequality constraints only:

\[
\begin{align*}
\min & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \ i = 1, \ldots, m
\end{align*}
\]

Consider an optimal solution \(x \). We would like to prove that \(x \) satisfies KKT condition.

Because \(x \) is optimal, from the optimality condition on slide 4-9, for any feasible direction \(\delta x \),

\[
\nabla f_0(x)^T \delta x \geq 0.
\]
A feasible δx means

$$f_i(x + \delta x) \leq 0, \forall i$$

Because

$$f_i(x + \delta x) \approx f_i(x) + \nabla f_i(x)^T \delta x$$

from

$$f_i(x) \leq 0, \forall i$$

we have

$$\nabla f_i(x)^T \delta x \leq 0 \text{ if } f_i(x) = 0.$$
We claim that

$$\nabla f_0(x) = \sum_{\lambda_i \geq 0, f_i(x) = 0} -\lambda_i \nabla f_i(x)$$ \hspace{1cm} (4)$$

Assume the result is wrong. First let’s consider

$$\nabla f_0(x) = \text{linear combination of } \{\nabla f_i(x) \mid f_i(x) = 0\} + \Delta,$$

where

$$\Delta \neq 0 \text{ and } \Delta^T \nabla f_i(x) = 0, \forall i : f_i(x) = 0.$$
Then there exists \(\alpha < 0 \) such that

\[
\delta x \equiv \alpha \Delta
\]

satisfies

\[
\nabla f_i(x)^T \delta x = 0 \quad \text{if} \quad f_i(x) = 0
\]

\[
f_i(x + \delta x) \leq 0 \quad \text{if} \quad f_i(x) < 0
\]

and

\[
\nabla f_0(x)^T \delta x = \alpha \Delta^T \Delta < 0
\]

This contradicts the optimality condition.
By a similar setting we can further prove (4).

Assume

$$\nabla f_0(x) = \sum_{i:f_i(x)=0} -\lambda_i \nabla f_i(x)$$

and there exists i' such that

$$\lambda_{i'} < 0, \nabla f_{i'}(x) \neq 0, \text{ and } f_{i'}(x) = 0$$
Let

\[\bar{\lambda} = \arg \min_{\lambda} \| \nabla f_{i'}(x) - \sum_{i: i \neq i', f_i(x) = 0} \nabla f_i(x) \lambda_i \| \]

\[\Delta = \| \nabla f_{i'}(x) - \sum_{i: i \neq i', f_i(x) = 0} \nabla f_i(x) \bar{\lambda}_i \| \]

Then

\[\nabla f_i(x)^T \Delta = 0, \forall i \neq i', f_i(x) = 0 \quad (5) \]
We have

\[\nabla f_{i'}(x)^T \Delta \geq 0 \]

If

\[\nabla f_{i'}(x)^T \Delta = 0 \]

then

\[-\lambda_{i'} \nabla f_{i'}(x) \]

can be rearranged to use linear combination of

\[\{ \nabla f_i(x) \mid i \neq i', f_i(x) = 0 \} \]
Otherwise

$$\nabla f_i'(x)^T \Delta > 0$$

- Let

$$\delta x = \alpha \Delta, \alpha < 0.$$

- From (5),

$$\nabla f_i(x)^T \delta x = 0, \forall i \neq i', f_i(x) = 0$$

$$\nabla f_{i'}(x)^T \delta x = \alpha \nabla f_{i'}(x)^T \Delta < 0.$$

Hence δx is a feasible direction.
However,

\[\nabla f_0(x)^T \delta x = -\alpha \lambda_i \nabla f_i(x)^T \Delta < 0 \]

contradicts the optimality condition.

This proof is not rigorous because of \(\approx \).

For linear the proof becomes rigorous.
Explanation of $f_0^*(\nu)$

$$\inf_y (f_0(y) - \nu^T y) = - \sup_y (\nu^T y - f_0(y)) = -f_0^*(\nu)$$

where $f_0^*(\nu)$ is the conjugate function
The original problem

\[g(\lambda, \nu) = \inf_{x} \|Ax - b\| = \text{constant} \]

Dual norm:

\[\|\nu\|_* \equiv \sup\{\nu^T y | \|y\| \leq 1\} \]

If \(\|\nu\|_* > 1 \),

\[\nu^T y^* > 1, \|y^*\| \leq 1 \]
\[
\inf \| y \| + \nu^T y \\
\leq \| - y^* \| - \nu^T y^* < 0 \\
\| - ty^* \| - \nu^T (ty^*) \to -\infty \text{ as } t \to \infty
\]

Hence

\[
\inf_y \| y \| + \nu^T y = -\infty
\]

If \(\| \nu \|_* \leq 1 \), we claim that

\[
\inf_y \| y \| + \nu^T y = 0
\]

\[y = 0 \Rightarrow \| y \| + \nu^T y = 0\]
If $\exists y$ such that
\[\|y\| + \nu^T y < 0 \]
then
\[\|-y\| < -\nu^T y \]
We can scale y so that
\[\sup\{\nu^T y \mid \|y\| \leq 1\} > 1 \]
but this causes a contradiction.
The dual function

\[c^T x + \nu^T (A x - b) = -b^T \nu + x^T (A^T \nu + c) \]

\[\inf_{-1 \leq x_i \leq 1} x_i (A^T \nu + c)_i = -|(A^T \nu + c)_i| \]
From 5-29 we need that Z is non-negative in the dual cone of S^k_+.

Dual cone of S^k_+ is S^k_+ (we didn’t discuss dual cone so we assume this result).

Why $\text{tr}(Z(\cdots))$?

We are supposed to do component-wise product between

$$Z \text{ and } x_1F_1 + \cdots + x_nF_n - G$$
Trace is the component-wise product

\[
\text{tr}(AB) = \sum_i (AB)_{ii} = \sum_i \sum_j A_{ij} B_{ji} = \sum_i \sum_j A_{ij} B_{ij}
\]

Note that we take the property that \(B \) is symmetric.
Uniform noise

\[p(z) = \begin{cases}
\frac{1}{2a} & \text{if } |z| \leq a \\
0 & \text{otherwise}
\end{cases} \]
Lagrangian:

\[
\frac{\|a\|}{2} - \sum_{i} \lambda_i (a^T x_i + b - 1) + \sum_{i} \mu_i (a^T y_i + b + 1)
\]

\[
= \frac{\|a\|}{2} + a^T \left(- \sum_{i} \lambda_i x_i + \sum_{i} \mu_i y_i \right)
\]

\[
+ b \left(- \sum_{i} \lambda_i + \sum_{i} \mu_i \right) + \sum_{i} \lambda_i + \sum_{i} \mu_i
\]

Because of

\[
b \left(- \sum_{i} \lambda_i + \sum_{i} \mu_i \right)
\]
we have

\[
\inf_{a,b} L = \begin{cases}
\inf_a \frac{\|a\|}{2} - \sum_i \lambda_i a^T x_i + \sum_i \mu_i a^T y_i & \text{if } \sum_i \lambda_i = \sum_i \mu_i \\
-\infty & \text{if } \sum_i \lambda_i \neq \sum_i \mu_i
\end{cases}
\]

For

\[
\inf_a \frac{\|a\|}{2} - \sum_i \lambda_i a^T x_i + \sum_i \mu_i a^T y_i
\]
we can denote it as

$$\inf_a \frac{\|a\|}{2} + v^T a$$

where v is a vector. We cannot do derivative because $\|a\|$ is not differentiable. Formal solution:
8-10: Dual of maximum margin problem

IV

- **Case 1:** If \(\|v\| \leq 1/2 \):

\[
a^T v \geq -\|a\| \|v\| \geq -\frac{\|a\|}{2}
\]

so

\[
\inf_a \frac{\|a\|}{2} + v^T a \geq 0.
\]

However,

\[
a = 0 \rightarrow \frac{\|a\|}{2} + v^T a = 0
\]
Therefore

\[\inf_a \frac{\|a\|}{2} + v^T a = 0. \]

- If \(\|v\| > 1/2 \), let

\[a = \frac{-tv}{\|v\|} \]

\[\frac{\|a\|}{2} + v^T a = \frac{t}{2} - t\|v\| \]

\[= t\left(\frac{1}{2} - \|v\|\right) \rightarrow \infty \text{ if } t \rightarrow -\infty \]
Thus

\[\inf_a \frac{\|a\|}{2} + v^T a = -\infty \]
\[\theta = \begin{bmatrix} \text{vec}(P) \\ q \\ r \end{bmatrix}, \quad F(z) = \begin{bmatrix} \vdots \\ z_i z_j \\ \vdots \\ z_i \\ \vdots \\ 1 \end{bmatrix} \]
The condition that S is closed if

$$f(x) \to \infty \text{ as } x \to \text{ boundary of domain } f$$

Proof: if not, consider

$$\{x_i\} \subset S$$

such that

$$x_i \to \text{ boundary}$$

Then

$$f(x_i) \to \infty > f(x^0)$$
and

\[S \text{ is not closed} \]

- Example

\[f(x) = \log\left(\sum_{i=1}^{m} \exp(a_i^T x + b_i) \right) \]

\[\text{domain} = \mathbb{R}^n \]
Example

\[f(x) = - \sum_i \log(b_i - a_i^T x) \]

We use the condition that

\[f(x) \to \infty \text{ as } x \to \text{ boundary of domain } f \]
S is bounded. Otherwise, there exists a set
\[\{ y_i \mid y_i = x + \Delta_i \} \subset S \]
satisfying
\[\lim_{i \to \infty} |\Delta_i| = \infty \]
Then
\[f(y_i) \geq f(x) + \nabla f(x)^T \Delta_i + \frac{m}{2} \| \Delta_i \|^2 \to \infty \]
This contradicts
\[f(y) \leq f(x^0) \]
10-4: strong convexity and implications II

- Proof of

\[p^* > -\infty \]

and

\[f(x) - p^* \leq \frac{1}{2m} \| \nabla f(x) \|^2 \]

From

\[f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \| x - y \|^2 \]

Minimize the right-hand side with respect to \(y \)

\[\nabla f(x) + m(y - x) = 0 \]
\[\tilde{y} = x - \frac{\nabla f(x)}{m} \]

\[f(y) \geq f(x) + \nabla f(x)^T (\tilde{y} - x) + \frac{m}{2} \| \tilde{y} - x \|^2 \]

\[= f(x) - \frac{1}{2m} \| \nabla f(x) \|^2, \forall y \]

Then

\[p^* \geq f(x) - \frac{1}{2m} \| \nabla f(x) \|^2 \]

and

\[f(x) - p^* \leq \frac{1}{2m} \| \nabla f(x) \|^2 \]
10-5: descent methods I

If

\[f(x + t\Delta x) < f(x) \]

then

\[\nabla f(x)^T \Delta x < 0 \]

Proof: From the first-order condition of a convex function

\[f(x + t\Delta x) \geq f(x) + t\nabla f(x)^T \Delta x \]

Then

\[t\nabla f(x)^T \Delta x \leq f(x + t\Delta x) - f(x) < 0 \]
10-6: line search types I

- Why

\[\alpha \in (0, \frac{1}{2})? \]

The use of 1/2 is for convergence though we won’t discuss details.

- Finite termination of backtracking line search. We argue that \(\exists t^* > 0 \) such that

\[f(x + t\Delta x) < f(x) + \alpha t\nabla f(x)^T \Delta x, \forall t \in (0, t^*) \]

Otherwise,

\[\exists \{t_k\} \to 0 \]
such that

\[f(x + t_k \Delta x) \geq f(x) + \alpha t_k \nabla f(x)^T \Delta x, \forall k \]

\[
\lim_{t_k \to 0} \frac{f(x + t_k \Delta x) - f(x)}{t_k} = \nabla f(x)^T \Delta x \geq \alpha \nabla f(x)^T \Delta x
\]

However,

\[\nabla f(x)^T \Delta x < 0 \text{ and } \alpha > 0 \]

cause a contradiction
Geometric interpretation: the tangent line passes through \((0, f(x))\), so the equation is

$$\frac{y - f(x)}{t - 0} = \nabla f(x)^T \Delta x$$

Because

$$\nabla f(x)^T \Delta x < 0,$$

we see that the line of

$$f(x) + \alpha t \nabla f(x)^T \Delta x$$
is above that of

\[f(x) + t \nabla f(x)^T \Delta x \]
Linear convergence. We consider exact line search; proof for backtracking line search is more complicated.

S closed and bounded

\[\nabla^2 f(x) \preceq M I, \forall x \in S \]

\[f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} \|y - x\|^2 \]

Solve

\[\min_t f(x) - t \nabla f(x)^T \nabla f(x) + \frac{t^2 M}{2} \nabla f(x)^T \nabla f(x) \]
\(t = \frac{1}{M} \)

\[
f(x_{\text{next}}) \leq f(x - \frac{1}{M} \nabla f(x)) \leq f(x) - \frac{1}{2M} \nabla f(x)^T \nabla f(x)
\]

The first inequality is from the fact that we use exact line search

\[
f(x_{\text{next}}) - p^* \leq f(x) - p^* - \frac{1}{2M} \nabla f(x)^T \nabla f(x)
\]

From slide 10-4,

\[
-\|\nabla f(x)\|^2 \leq -2m(f(x) - p^*)
\]
Hence

\[f(x_{\text{next}}) - p^* \leq (1 - \frac{m}{M})(f(x) - p^*) \]
Assume

\[x_1^k = \gamma \left(\frac{\gamma - 1}{\gamma + 1} \right)^k, \quad x_2^k = \left(-\frac{\gamma - 1}{\gamma + 1} \right)^k, \]

\[\nabla f(x_1, x_2) = \begin{bmatrix} x_1 \\ \gamma x_2 \end{bmatrix} \]

\[\min_t \frac{1}{2} \left((x_1 - tx_1)^2 + \gamma (x_2 - t\gamma x_2)^2 \right) \]

\[\min_t \frac{1}{2} \left(x_1^2(1 - t)^2 + \gamma x_2^2(1 - t\gamma)^2 \right) \]
\[-x_1^2(1 - t) + \gamma x_2^2(1 - t\gamma)(-\gamma) = 0\]
\[-x_1^2 + tx_1^2 - \gamma^2 x_2^2 + \gamma^3 tx_2^2 = 0\]
\[t(x_1^2 + \gamma^3 x_2^2) = x_1^2 + \gamma^2 x_2^2\]
\[t = \frac{x_1^2 + \gamma^2 x_2^2}{x_1^2 + \gamma^3 x_2^2} = \frac{\gamma^2\left(\frac{\gamma - 1}{\gamma + 1}\right)^{2k} + \gamma^2\left(\frac{\gamma - 1}{\gamma + 1}\right)^{2k}}{\gamma^2\left(\frac{\gamma - 1}{\gamma + 1}\right)^{2k} + \gamma^3\left(\frac{\gamma - 1}{\gamma + 1}\right)^{2k}}\]
\[= \frac{2\gamma^2}{\gamma^2 + \gamma^3} = \frac{2}{1 + \gamma}\]

\[x^{k+1} = x^k - t\nabla f(x^k) = \begin{bmatrix} x_1^k(1 - t) \\ x_2^k(1 - \gamma t) \end{bmatrix}\]
\[x_1^{k+1} = \gamma \left(\frac{\gamma - 1}{\gamma + 1} \right)^k \left(\frac{\gamma - 1}{1 + \gamma} \right) = \gamma \left(\frac{\gamma - 1}{\gamma + 1} \right)^{k+1} \]

\[x_2^{k+1} = \left(-\frac{\gamma - 1}{\gamma + 1} \right)^k \left(1 - \frac{2\gamma}{1 + \gamma} \right) \]

\[= \left(-\frac{\gamma - 1}{\gamma + 1} \right)^k \left(\frac{1 - \gamma}{1 + \gamma} \right) = \left(-\frac{\gamma - 1}{\gamma + 1} \right)^{k+1} \]

- Why gradient is orthogonal to the tangent line of the contour curve?
Assume $f(g(t))$ is the countour with

$$g(0) = x$$

Then

$$0 = f(g(t)) - f(g(0))$$

$$0 = \lim_{t \to 0} \frac{f(g(t)) - f(g(0))}{t}$$

$$= \lim_{t \to 0} \nabla f(g(t))^T \nabla g(t)$$

$$= \nabla f(x)^T \nabla g(0)$$
where

\[x + t \nabla g(0) \]

is the tangent line
linear convergence: from slide 10-7

\[f(x^k) - p^* \leq c^k(f(x^0) - p^*) \]

\[\log(c^k(f(x^0) - p^*)) = k \log c + \log(f(x^0) - p^*) \]

is a straight line. Note that now \(k \) is the \(x \)-axis.
10-11: steepest descent method I

- (unnormalized) steepest descent direction:

\[\Delta x_{sd} = \| \nabla f(x) \|_* \Delta x_{nsd} \]

Here \(\| \cdot \|_* \) is the dual norm

- We didn’t discuss much about dual norm, but we can still explain some examples on 10-12
Euclidean: \(\Delta x_{\text{nsd}} \) is by solving

\[
\min \quad \nabla f^T v
\]

subject to \(\|v\| = 1 \)

\[
\nabla f^T v = \|\nabla f\| \|v\| \cos \theta = -\|\nabla f\| \quad \text{when} \quad \cos \theta = \pi
\]

\[
\Delta x_{\text{nsd}} = \frac{-\nabla f(x)}{\|\nabla f(x)\|}
\]

\[
\|\nabla f(x)\|_* = \|\nabla f(x)\|
\]

\[
\|\nabla f(x)\|_* \Delta x_{\text{nsd}} = \|\nabla f(x)\|_* \frac{-\nabla f(x)}{\|\nabla f(x)\|} = -\nabla f(x)
\]
Quadratic norm: Δx_{nsd} is by solving

$$\min \nabla f^T v$$

subject to

$$v^T P v = 1$$

Now

$$\|v\|_P = \sqrt{v^T P v},$$

where P is symmetric positive definite
Let

\[w = P^{1/2}v \]

The optimization problem becomes

\[
\begin{aligned}
\min_w & \quad \nabla f^T P^{-1/2}w \\
\text{subject to} & \quad \|w\| = 1
\end{aligned}
\]

optimal \(w \) = \[
\begin{aligned}
& -P^{-1/2}\nabla f \\
= & \frac{-P^{-1/2}\nabla f}{\|P^{-1/2}\nabla f\|} \\
= & \frac{-P^{-1/2}\nabla f}{\sqrt{\nabla f^T P^{-1}\nabla f}}
\end{aligned}
\]
optimal $v = \frac{-P^{-1} \nabla f}{\sqrt{\nabla f^T P^{-1} \nabla f}}$

• Dual norm

$$\|z\|_* = \|P^{-1/2} z\|$$

Therefore

$$\Delta x_{sd} = \sqrt{\nabla f^T P^{-1} \nabla f} \cdot \frac{-P^{-1} \nabla f}{\sqrt{\nabla f^T P^{-1} \nabla f}} = -P^{-1} \nabla f$$
Explanation of the figure:

\[-\nabla f(x)^T \Delta x_{nsd} = \| - \nabla f(x) \| \| \Delta x_{nsd} \| \cos \theta\]

\[\| - \nabla f(x) \| \] is a constant. From a point \(\Delta x_{nsd} \) on the boundary, the projected point on \(-\nabla f(x) \) indicates

\[\| \Delta x_{nsd} \| \cos \theta\]

In the figure, we see that the chosen \(\Delta x_{nsd} \) has the largest \(\| \Delta x_{nsd} \| \cos \theta \)

We omit the discussion of \(l_1 \)-norm
The two figures are by using two P matrices
The left one has faster convergence
Gradient descent after change of variables

\[\bar{x} = P^{1/2}x, \quad x = P^{-1/2}\bar{x} \]

\[\min_x f(x) \Rightarrow \min_{\bar{x}} f(P^{-1/2}\bar{x}) \]

\[\bar{x} \leftarrow \bar{x} - \alpha P^{-1/2}\nabla_x f(P^{-1/2}\bar{x}) \]

\[P^{1/2}x \leftarrow P^{1/2}x - \alpha P^{-1/2}\nabla_x f(x) \]

\[x \leftarrow x - \alpha P^{-1}\nabla_x f(x) \]
$f'(x)$
Solve

\[f'(x) = 0 \]

Finding the tangent line at \(x_k \):

\[\frac{y - f'(x_k)}{x - x_k} = f''(x_k) \]

\(x_k \): the current iterate

Let \(y = 0 \)

\[x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} \]
\[\hat{f}(y) = f(x) + \nabla f(x)^T(y - x) + \frac{1}{2}(y - x)^T \nabla^2 f(x)(y - x) \]

\[\nabla \hat{f}(y) = 0 = \nabla f(x) + \nabla^2 f(x)(y - x) \]

\[y - x = -\nabla^2 f(x)^{-1} \nabla f(x) \]

\[\inf_y \hat{f}(y) = f(x) - \frac{1}{2} \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \]

\[f(x) - \inf_y \hat{f}(y) = \frac{1}{2} \lambda(x)^2 \]
Norm of the Newton step in the quadratic Hessian norm

\[\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) \]

\[\Delta x_{nt}^T \nabla^2 f(x) \Delta x_{nt} = \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) = \lambda(x)^2 \]

Directional derivative in the Newton direction

\[
\lim_{t \to 0} \frac{f(x + t\Delta_{nt}) - f(x)}{t} = \nabla f(x)^T \Delta x_{nt}
\]

\[
= -\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) = -\lambda(x)^2
\]
Affine invariant

\[\bar{f}(y) \equiv f(Ty) = f(x) \]

Assume \(T \) is an invertable square matrix. Then

\[\bar{\lambda}(y) = \lambda(Ty) \]

Proof:

\[\nabla \bar{f}(y) = T^T \nabla f(Ty) \]

\[\nabla^2 \bar{f}(y) = T^T \nabla^2 f(Ty) T \]
\[\lambda(y)^2 = \nabla \tilde{f}(y)^T \nabla^2 \tilde{f}(y)^{-1} \nabla \tilde{f}(y) \]
\[= \nabla f(Ty)^T \Sigma TT^{-1} \nabla^2 f(Ty)^{-1} T^{-T} T^T \nabla f(Ty) \]
\[= \nabla f(Ty)^T \nabla^2 f(Ty)^{-1} \nabla f(Ty) \]
\[= \lambda(Ty)^2 \]
Affine invariant

\[\Delta y_{nt} = \nabla^2 \bar{f}(y)^{-1} \nabla \bar{f}(y) \]
\[= T^{-1} \nabla^2 f(Ty)^{-1} \nabla f(Ty) \]
\[= T^{-1} \Delta x_{nt} \]

Note that

\[y_k = T^{-1} x_k \]

so

\[y_{k+1} = T^{-1} x_{k+1} \]
But how about line search

\[
\nabla \bar{f}(y)^T \Delta y_{nt} \\
=\nabla f(Ty)^T TTT^{-1} \Delta x_{nt} \\
=\nabla f(x)^T \Delta x_{nt}
\]
\[\eta \in (0, \frac{m^2}{L}) \]

\[\| \nabla f(x_k) \| \leq \eta \leq \frac{m^2}{L} \]

\[\frac{L}{2m^2} \| \nabla f(x_k) \| \leq \frac{1}{2} \]
\[f(x_l) - f(x^*) \leq \frac{1}{2m} \| \nabla f(x_l) \|^2 \quad \text{(from p10-4)} \]

\[\leq \frac{1}{2m} \frac{4m^4}{L^2} \left(\frac{1}{2} \right)^{2^{l-k+1}} \leq \epsilon \]

Let

\[\epsilon_0 = \frac{2m^3}{L^2} \]
\[\log_2 \epsilon_0 - 2^{l-k+1} \leq \log_2 \epsilon \]
\[2^{l-k+1} \geq \log_2 (\epsilon_0/\epsilon) \]
\[l \geq k - 1 + \log_2 \log_2 (\epsilon_0/\epsilon) \]
\[k \leq \frac{f(x_0) - p^*}{r} \]

In at most
\[\frac{f(x_0) - p^*}{r} + \log_2 \log_2 (\epsilon_0/\epsilon) \]
iterations, we have
\[f(x_l) - f(x^*) \leq \epsilon \]
\[\lambda(x) = (\nabla f(x) \nabla^2 f(x)^{-1} \nabla f(x))^{1/2} = (g^T L^{-T} L^{-1} g)^{1/2} = \|L^{-1} g\|_2 \]
10-30: example of dense Newton systems with structure I

\[\nabla f(x) = \begin{bmatrix} \psi_1'(x_1) \\ \vdots \\ \psi_n'(x_n) \end{bmatrix} + A^T \nabla \psi_0(Ax + b) \]

\[\nabla^2 f(x) = \begin{bmatrix} \psi_1''(x_1) \\ \vdots \\ \psi_n''(x_n) \end{bmatrix} + A^T \nabla^2 \psi_0^2(Ax + b)A \]

method 2:

\[\Delta x = D^{-1}(-g - A^T L_o w) \]
10-30: example of dense Newton systems with structure II

\[
L_0^T AD^{-1}(-g - A^T L_0 w) = w
\]

\[
(I + L_0^T AD^{-1} A^T L_0)w = -L_0^T AD^{-1} g
\]

Cost

\[
L_0 : p \times p
\]

\[
A^T L_0 : n \times p, \text{ cost : } O(np)
\]

\[
(L_0^T A) D^{-1} (A^T L_0) : O(p^2 n)
\]
Note that Cholesky factorization of H_0 costs

$$\frac{1}{3}p^3 \leq p^2 n$$

as

$$p \ll n$$