
1-5: Least-squares I

A : k × n. Usually
k > n

otherwise easily the minimum is zero.

Analytical solution:

f (x) =(Ax − b)T (Ax − b)

=xTATAx − 2bTAx + bTb

∇f (x) = 2ATAx − 2ATb = 0
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1-5: Least-squares II

Regularization, weights:

1

2
λxTx + w1(Ax − b)2

1 + · · ·+ wk(Ax − b)2
k
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2-4: Convex Combination and Convex
Hull I

Convex hull is convex

x = θ1x1 + · · ·+ θkxk

x̄ = θ̄1x̄1 + · · ·+ θ̄k̄ x̄k̄

Then

αx + (1− α)x̄

=αθ1x1 + · · ·+ αθkxk+

(1− α)θ̄1x̄1 + · · ·+ (1− α)θ̄k̄ x̄k̄
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2-4: Convex Combination and Convex
Hull II

Each coefficient is nonnegative and

αθ1 + · · ·+ αθk + (1− α)θ̄1 + · · ·+ (1− α)θ̄k̄
= α + (1− α) = 1
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2-7: Euclidean Balls and Ellipsoid I

We prove that any

x = xc + Au with ‖u‖2 ≤ 1

satisfies
(x − xc)TP−1(x − xc) ≤ 1

Let
A = P1/2

because P is symmetric positive definite.
Then

uTATP−1Au = uTP1/2P−1P1/2u ≤ 1.
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2-10: Positive Semidefinite Cone I

Sn
+ is a convex cone. Let

X1,X2 ∈ Sn
+

For any θ1 ≥ 0, θ2 ≥ 0,

zT (θ1X1 + θ2X2)z = θ1z
TX1z + θ2z

TX2z ≥ 0
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2-10: Positive Semidefinite Cone II
Example: [

x y
y z

]
∈ S2

+

is equivalent to

x ≥ 0, z ≥ 0, xz − y 2 ≥ 0

If x > 0 or (z > 0) is fixed, we can see that

z ≥ y 2

x

has a parabolic shape
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2-12: Interaction I

When t is fixed,

{(x1, x2) | −1 ≤ x1 cos t + x2 cos 2t ≤ 1}

gives a region between two parallel lines

This region is convex
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2-13: Affine Function I

f (S) is convex:

Let
f (x1) ∈ f (S), f (x2) ∈ f (S)

αf (x1) + (1− α)f (x2)

=α(Ax1 + b) + (1− α)(Ax2 + b)

=A(αx1 + (1− α)x2) + b

∈f (S)
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2-13: Affine Function II
f −1(C ) convex:

x1, x2 ∈ f −1(C )

means that

Ax1 + b ∈ C ,Ax2 + b ∈ C

Because C is convex,

α(Ax1 + b) + (1− α)(Ax2 + b)

=A(αx1 + (1− α)x2) + b ∈ C

Thus
αx1 + (1− α)x2 ∈ f −1(C )
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2-13: Affine Function III

Scaling:
αS = {αx | x ∈ S}

Translation

S + a = {x + a | x ∈ S}

Projection

T = {x1 ∈ Rm | (x1, x2) ∈ S , x2 ∈ Rn}, S ⊆ Rm×Rn

Scaling, translation, and projection are all affine
functions
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2-13: Affine Function IV

For example, for projection

f (x) =
[
I 0

] [x1

x2

]
+ 0

I : identity matrix

Solution set of linear matrix inequality

C = {S | S � 0} is convex

f (x) = x1A1 + · · ·+ xmAm − B = Ax + b

f −1(C ) = {x | f (x) � 0} is convex
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2-13: Affine Function V

But this isn’t rigourous because of some problems in
arguing

f (x) = Ax + b

A more formal explanation:

C = {s ∈ Rp2 | mat(s) ∈ Sp and mat(s) � 0}

is convex

f (x) = x1vec(A1) + · · ·+ xmvec(Am)− vec(B)

=
[
vec(A1) · · · vec(Am)

]
x + (−vec(B))
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2-13: Affine Function VI

f −1(C ) = {x | mat(f (x)) ∈ Sp and mat(f (x)) � 0}

is convex

Hyperbolic cone:

C = {(z , t) | zT z ≤ t2, t ≥ 0}

is convex (by drawing a figure in 2 or 3 dimensional
space)
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2-13: Affine Function VII

We have that

f (x) =

[
P1/2x
cTx

]
=

[
P1/2

cT

]
x

is affine. Then

f −1(C ) = {x | f (x) ∈ C}
= {x | xTPx ≤ (cTx)2, cTx ≥ 0}

is convex
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Perspective and linear-fractional function I

Image convex: if S is convex, check if

{P(x , t) | (x , t) ∈ S}

convex or not

Note that S is in the domain of P
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Perspective and linear-fractional function
II

Assume
(x1, t1), (x2, t2) ∈ S

We hope

α
x1

t1
+ (1− α)

x2

t2
= P(A,B),

where
(A,B) ∈ S
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Perspective and linear-fractional function
III

We have

α
x1

t1
+ (1− α)

x2

t2
=
αt2x1 + (1− α)t1x2

t1t2

=
αt2x1 + (1− α)t1x2

αt1t2 + (1− α)t1t2

=

αt2
αt2+(1−α)t1

x1 + (1−α)t1
αt2+(1−α)t1

x2

αt2
αt2+(1−α)t1

t1 + (1−α)t1
αt2+(1−α)t1

t2
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Perspective and linear-fractional function
IV

Let

θ =
αt2

αt2 + (1− α)t1

We have
θx1 + (1− θ)x2

θt1 + (1− θ)t2
=

A

B

Further
(A,B) ∈ S

because
(x1, t1), (x2, t2) ∈ S
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Perspective and linear-fractional function
V

and
S is convex

Inverse image is convex

Given C a convex set

P−1(C ) = {(x , t) | P(x , t) = x/t ∈ C}

is convex

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 20 / 199



Perspective and linear-fractional function
VI

Let

(x1, t1) : x1/t1 ∈ C

(x2, t2) : x2/t2 ∈ C

Do we have

θ(x1, t1) + (1− θ)(x2, t2) ∈ P−1(C )?

That is,
θx1 + (1− θ)x2

θt1 + (1− θ)t2
∈ C?
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Perspective and linear-fractional function
VII

Let

θx1 + (1− θ)x2

θt1 + (1− θ)t2
= α

x1

t1
+ (1− α)

x2

t2
,

Earlier we had

θ =
αt2

αt2 + (1− α)t1

Then
(α(t2 − t1) + t1)θ = αt2
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Perspective and linear-fractional function
VIII

t1θ = αt2 − αt2θ + αt1θ

α =
t1θ

t1θ + (1− θ)t2
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2-16: Generalized inequalities I

K contains no line:

∀x with x ∈ K and − x ∈ K ⇒ x = 0

Nonnegative polynomial on [0, 1]

When n = 2

x1 ≥ −tx2,∀t ∈ [0, 1]

t = 1
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2-16: Generalized inequalities II

t = 0
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2-16: Generalized inequalities III

∀t ∈ [0, 1]

It really becomes a proper cone
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2-17: I

Properties:
x �K y , u �K v

implies that

x − y ∈ K

u − v ∈ K

From the definition of a convex cone,

(x − y) + (u − v) ∈ K

Then
x + u �K y + v
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2-18: Minimum and minimal elements I

The minimum element

S ⊆ x1 + K

A minimal element

(x2 − K ) ∩ S = {x2}
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2-19: Separating hyperplane theorem I

We consider a simplified situation and omit part of
the proof

Assume
inf

u∈C ,v∈D
‖u − v‖ > 0

and minimum attained at c , d

We will show that

a ≡ d − c , b ≡ ‖d‖
2 − ‖c‖2

2

forms a separating hyperplane aTx = b
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2-19: Separating hyperplane theorem II

aTx = ∆2 b ∆1

c d

a = d − c

∆1 = (d − c)Td , ∆2 = (d − c)Tc

b =
∆1 + ∆2

2
=

dTd − cTc

2
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2-19: Separating hyperplane theorem III

Assume the result is wrong so there is u ∈ D such
that

aTu − b < 0

We will derive a point u′ in D but closer to c than
d . That is,

‖u′ − c‖ < ‖d − c‖

Then we have a contradiction

The concept
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2-19: Separating hyperplane theorem IV

aTx = b

c d

u
u′

aTu − b = (d − c)Tu − dTd − cTc

2
< 0

implies that

(d − c)T (u − d) +
1

2
‖d − c‖2 < 0
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2-19: Separating hyperplane theorem V
d

dt
‖d + t(u − d)− c‖2

∣∣∣∣
t=0

=2(d + t(u − d)− c)T (u − d)

∣∣∣∣
t=0

=2(d − c)T (u − d) < 0

There exists a small t ∈ (0, 1) such that

‖d + t(u − d)− c‖ < ‖d − c‖

However,
d + t(u − d) ∈ D,

so there is a contradiction
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2-20: Supporting hyperplane theorem I

Case 1: C has an interior region

Consider 2 sets:

interior of C versus {x0},
where x0 is any boundary point

If C is convex, then interior of C is also convex

Then both sets are convex

We can apply results in slide 2-19 so that there
exists a such that

aTx ≤ aTx0,∀x ∈ interior of C
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2-20: Supporting hyperplane theorem II

Then for all boundary point x we also have

aTx ≤ aTx0

because any boundary point is the limit of interior
points

Case 2: C has no interior region

In this situation, C is like a line in R3 (so no
interior). Then of course it has a supporting
hyperplane
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3-4: Examples on Rn and Rm×n I

A,X ∈ Rm×n

tr(ATX ) =
∑
j

(ATX )jj

=
∑
j

∑
i

AT
ji Xij =

∑
j

∑
i

AijXij
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3-7: First-order Condition I

An open set: for any x , there is a ball covering x
such that this ball is in the set

Global underestimator:

z − f (x)

y − x
= f ′(x)

z = f (x) + f ′(x)(y − x)
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3-7: First-order Condition II

⇒: Because domain f is convex,

for all 0 < t ≤ 1, x + t(y − x) ∈ domain f

f (x + t(y − x)) ≤ (1− t)f (x) + tf (y)

f (y) ≥ f (x) +
f (x + t(y − x))− f (x)

t

when t → 0,

f (y) ≥ f (x) +∇f (x)T (y − x)

⇐:
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3-7: First-order Condition III

For any 0 ≤ θ ≤ 1,

z = θx + (1− θ)y

f (x) ≥f (z) +∇f (z)T (x − z)

=f (z) +∇f (z)T (1− θ)(x − y)

f (y) ≥f (z) +∇f (z)T (y − z)

=f (z) +∇f (z)Tθ(y − x)

θf (x) + (1− θ)f (y) ≥ f (z)
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3-7: First-order Condition IV

First-order condition for strictly convex function:

f is strictly convex if and only if

f (y) > f (x) +∇f (x)T (y − x)

⇐: it’s easy by directly modifying ≥ to >

f (x) >f (z) +∇f (z)T (x − z)

=f (z) +∇f (z)T (1− θ)(x − y)

f (y) > f (z)+∇f (z)T (y−z) = f (z)+∇f (z)Tθ(y−x)
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3-7: First-order Condition V

⇒: Assume the result is wrong. From the 1st-order
condition of a convex function, ∃x , y such that
x 6= y and

∇f (x)T (y − x) = f (y)− f (x) (1)

For this (x , y), from the strict convexity

f (x + t(y − x))− f (x) <tf (y)− tf (x)

=∇f (x)T t(y − x),∀t ∈ (0, 1)

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 41 / 199



3-7: First-order Condition VI

Therefore,

f (x+t(y−x)) < f (x)+∇f (x)T t(y−x),∀t ∈ (0, 1)

However, this contradicts the first-order condition:

f (x+t(y−x)) ≥ f (x)+∇f (x)T t(y−x),∀t ∈ (0, 1)

This proof was given by a student of this course
before
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3-8: Second-order condition I

Proof of the 2nd-order condition:
We consider only the simpler condition of n = 1

⇒
f (x + t) ≥ f (x) + f ′(x)t

lim
t→0

2
f (x + t)− f (x)− f ′(x)t

t2

= lim
t→0

2(f ′(x + t)− f ′(x))

2t
= f ′′(x) ≥ 0

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 43 / 199



3-8: Second-order condition II

“⇐”

f (x + t) = f (x) + f ′(x)t +
1

2
f ′′(x̄)t2

≥ f (x) + f ′(x)t

by 1st-order condition

The extension to general n is straightforward

If ∇2f (x) � 0, then f is strictly convex
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3-8: Second-order condition III

Using 1st-order condition for strictly convex
function:

f (y)

=f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x̄)(y − x)

>f (x) +∇f (x)T (y − x)

Note that in our proof of 1st-order condition for
strictly convex functions we used 2nd-order
condition of convex function, so no contradiction
here
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3-8: Second-order condition IV

It’s possible that f is strictly convex but

∇2f (x) � 0

Example:

f (x) = x4

Details omitted
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3-9: Examples I

Quadratic-over-linear

∂f

∂x
=

2x

y
,
∂f

∂y
= −x

2

y 2

∂2f

∂x∂x
=

2

y
,
∂2f

∂x∂y
= −2x

y 2
,
∂2f

∂y∂y
=

2x3

y 3
,

2

y 3

[
y
−x

] [
y −x

]
=

2

y 3

[
y 2 −xy
−xy x2

]
= 2

[
1
y − x

y2

− x
y2

x2

y3

]
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3-10 I

f (x) = log
∑
k

exp xk

∇f (x) =


ex1∑
k e

xk

...
exn∑
k e

xk


∇2

ii f =
(
∑

k e
xk)exi − exiexi

(
∑

k e
xk)2

,∇2
ij f =

−exiexj
(
∑

k e
xk)2

, i 6= j

Note that if
zk = exp xk
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3-10 II

then
(zzT )ij = zi(z

T )j = zizj

Cauchy-Schwarz inequality

(a1b1 + · · ·+ anbn)2 ≤ (a2
1 + · · ·+ a2

n)(b2
1 + · · ·+ b2

n)

ak = vk
√
zk , bk =

√
zk

Note that
zk > 0
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3-12: Jensen’s inequality I

General form

f (

∫
p(z)zdz) ≤

∫
p(z)f (z)dz

Discrete situation

f (
∑

pizi) ≤
∑

pi f (zi),
∑

pi = 1
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3-12: Jensen’s inequality II
Proof:

f (p1z1 + p2z2 + p3z3)

≤(1− p3)

(
f

(
p1z1 + p2z2

1− p3

))
+ p3f (z3)

≤(1− p3)

(
p1

1− p3
f (z1) +

p2

1− p3
f (z2)

)
+ p3f (z3)

=p1f (z1) + p2f (z2) + p3f (z3)

Note that

p1

1− p3
+

p2

1− p3
=

1− p3

1− p3
= 1
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Positive weighted sum & composition with
affine function I

Composition with affine function:

We know
f (x) is convex

Is
g(x) = f (Ax + b)
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Positive weighted sum & composition with
affine function II

convex?

g((1− α)x1 + αx2)

=f (A((1− α)x1 + αx2) + b)

=f ((1− α)(Ax1 + b) + α(Ax2 + b))

≤(1− α)f (Ax1 + b) + αf (Ax2 + b)

=(1− α)g(x1) + αg(x2)
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3-15: Pointwise maximum I

Proof of the convexity

f ((1− α)x1 + αx2)

= max(f1((1− α)x1 + αx2), . . . , fm((1− α)x1 + αx2))

≤max((1− α)f1(x1) + αf1(x2), . . . ,

(1− α)fm(x1) + αfm(x2))

≤(1− α) max(f1(x1), . . . , fm(x1))+

αmax(f1(x2), . . . , fm(x2))

≤(1− α)f (x1) + αf (x2)
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3-15: Pointwise maximum II

For

f (x) = x[1] + · · ·+ x[r ]

consider all (
n

r

)
combinations
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3-16: Pointwise supremum I

The proof is similar to pointwise maximum

Support function of a set C :

When y is fixed,

f (x , y) = yTx

is linear (convex) in x

Maximum eigenvales of symmetric matrix

f (X , y) = yTXy

is a linear function of X when y is fixed
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3-19: Minimization I

Proof:

Let ε > 0. ∃y1, y2 ∈ C such that

f (x1, y1) ≤ g(x1) + ε

f (x2, y2) ≤ g(x2) + ε

g(θx1 + (1− θ)x2) = inf
y∈C

f (θx1 + (1− θ)x2, y)

≤f (θx1 + (1− θ)x2, θy1 + (1− θ)y2)

≤θf (x1, y1) + (1− θ)f (x2, y2)

≤θg(x1) + (1− θ)g(x2) + ε
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3-19: Minimization II

Note that the first inequality use the peroperty that
C is convex to have

θy1 + (1− θ)y2 ∈ C

Because the above inequality holds for all ε > 0,

g(θx1 + (1− θ)x2) ≤ θg(x1) + (1− θ)g(x2)
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3-19: Minimization III
first example:
The goal is to prove

A− BC−1BT � 0

Instead of a direct proof, here we use the property
in this slide. First we have that f (x , y) is convex in
(x , y) because [

A B
BT C

]
� 0

Consider
min
y

f (x , y)

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 59 / 199



3-19: Minimization IV

Because
C � 0,

the minimum occurs at

2Cy + 2BTx = 0

y = −C−1BTx

Then

g(x) = xTAx − 2xTBC−1Bx + xTBC−1CC−1BTx

= xT (A− BC−1BT )x
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3-19: Minimization V

is convex. The second-order condition implies that

A− BC−1BT � 0
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3-21: the conjugate function I

This function is useful later

When y is fixed, maximum happens at

y = f ′(x) (2)

by taking the derivative on x
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3-21: the conjugate function II

Explanation of the figure: when y is fixed

z = xy

is a straight line passing through the origin, where y
is the slope of the line. Check under which x ,

yx and f (x)

have the largest distance

From the figure, the largest distance happens when
(2) holds
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3-21: the conjugate function III
About the point

(0,−f ∗(y))

The tangent line is

z − f (x0)

x − x0
= f ′(x0)

where x0 is the point satisfying

y = f ′(x0)

When x = 0,

z = −x0f
′(x0) + f (x0) = −x0y + f (x0) = −f ∗(y)
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3-21: the conjugate function IV

f ∗ is convex: Given x ,

yTx − f (x)

is linear (convex) in y . Then we apply the property
of pointwise supremum
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3-22: examples I

negative logarithm

f (x) = − log x

∂

∂x
(xy + log x) = y +

1

x
= 0

If y < 0, the picture of

xy + log x
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3-22: examples II

Then
xy + log x = −1− log(−y)
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3-22: examples III

strictly convex quadratic

Qx = y , x = Q−1y

yTx − 1

2
xTQx

=yTQ−1y − 1

2
yTQ−1QQ−1y

=
1

2
yTQ−1y
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3-23: quasiconvex functions I

Figure on slide:

Sα = [a, b], Sβ = (−∞, c]

Both are convex

The figure is an example showing that quasi convex
may not be convex
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3-26: properties of quasiconvex functions I

Modified Jensen inequality:
f quasiconvex if and only if

f (θx+(1−θ)y) ≤ max{f (x), f (y)},∀x , y , θ ∈ [0, 1].

⇒ Let
∆ = max{f (x), f (y)}

S∆ is convex
x ∈ S∆, y ∈ S∆

θx + (1− θ)y ∈ S∆
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3-26: properties of quasiconvex functions
II

f (θx + (1− θ)y) ≤ ∆

and the result is obtained

⇐ If results are wrong, there exists α such that Sα
is not convex.

∃x , y , θ with x , y ∈ Sα, θ ∈ [0, 1] such that

θx + (1− θ)y /∈ Sα
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3-26: properties of quasiconvex functions
III

Then

f (θx + (1− θ)y) > α ≥ max{f (x), f (y)}

This violates the assumption

First-order condition (this is exercise 3.43):

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 72 / 199



3-26: properties of quasiconvex functions
IV

“⇒”

f ((1− t)x + ty) ≤ max(f (x), f (y)) = f (x)

f (x + t(y − x))− f (x)

t
≤ 0

lim
t→0

f (x + t(y − x))− f (x)

t
= ∇f (x)T (y − x) ≤ 0
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3-26: properties of quasiconvex functions
V

⇐: If results are wrong, there exists α such that Sα
is not convex.

∃x , y , θ with x , y ∈ Sα, θ ∈ [0, 1] such that

θx + (1− θ)y /∈ Sα

Then

f (θx + (1− θ)y) > α ≥ max{f (x), f (y)} (3)
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3-26: properties of quasiconvex functions
VI

Because f is differentiable, it is continuous.
Without loss of generality, we have

f (z) ≥ f (x), f (y),∀z between x and y

z = x + θ(y − x), θ ∈ (0, 1)

∇f (z)T (−θ(y − x)) ≤ 0

∇f (z)T (y − x − θ(y − x)) ≤ 0

Then
∇f (z)T (y − x) = 0,∀θ ∈ (0, 1)
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3-26: properties of quasiconvex functions
VII

f (x + θ(y − x))

=f (x) +∇f (t)Tθ(y − x)

=f (x),∀θ ∈ [0, 1)

This contradicts (3).
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3-27: Log-concave and log-convex
functions I

Powers:
log(xa) = a log x

log x is concave

Probability densities:

log f (x) = −1

2
(x − x̄)TΣ−1(x − x̄) + constant

Σ−1 is positive definite. Thus log f (x) is concave
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3-27: Log-concave and log-convex
functions II

Cumulative Gaussian distribution

log Φ(x) = log

∫ x

−∞
e−u

2/2du

d

dx
log Φ(x) =

e−x
2/2∫ x

−∞ e−u2/2du

d2

d2x
log Φ(x)

=
(
∫ x

−∞ e−u
2/2du)e−x

2/2(−x)− e−x
2/2e−x

2/2

(
∫ x

−∞ e−u2/2du)2
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3-27: Log-concave and log-convex
functions III

Need to prove that(∫ x

−∞
e−u

2/2du

)
x + e−x

2/2 > 0

Because

x ≥ u for all u ∈ (−∞, x ],
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3-27: Log-concave and log-convex
functions IV

we have (∫ x

−∞
e−u

2/2du

)
x + e−x

2/2

=

∫ x

−∞
xe−u

2/2du + e−x
2/2

≥
∫ x

−∞
ue−u

2/2du + e−x
2/2

=− e−u
2/2|x−∞ + e−x

2/2

=− e−x
2/2 + e−x

2/2 = 0
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3-27: Log-concave and log-convex
functions V

This proof was given by a student (and polished by
another student) of this course before
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4-3: Optimal and locally optimal points I

f0(x) = 1/x

f0(x) = x log x
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4-3: Optimal and locally optimal points II

f ′0(x) = 1 + log x = 0

x = e−1 = 1/e

f0(x) = x3 − 3x
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4-3: Optimal and locally optimal points III

f ′0(x) = 3x2 − 3 = 0

x = ±1
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4-9: Optimality criterion for differentiable
f0 I

⇐: easy
From first-order condition

f0(y) ≥ f0(x) +∇f0(x)T (y − x)

Together with

∇f0(x)T (y − x) ≥ 0

we have

f0(y) ≥ f0(x), for all feasible y
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4-9: Optimality criterion for differentiable
f0 II

⇒ Assume the result is wrong. Then

∇f0(x)T (y − x) < 0

Let
z(t) = ty + (1− t)x

d

dt
f0(z(t)) = ∇f0(z(t))T (y − x)

d

dt
f0(z(t))

∣∣∣∣
t=0

= ∇f0(x)T (y − x) < 0
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4-9: Optimality criterion for differentiable
f0 III

There exists t such that

f0(z(t)) < f0(x)

Note that
z(t)

is feasible because

fi(z(t)) ≤ tfi(x) + (1− t)fi(y) ≤ 0

and

A(tx+(1−t)y) = tAx+(1−t)Ay = tb+(1−b)b = b
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4-9: Optimality criterion for differentiable
f0 IV
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4-10 I

Unconstrained problem:

Let
y = x − t∇f0(x)

It is feasible (unconstrained problem). Optimality
condition implies

∇f0(x)T (y − x) = −t‖∇f0(x)‖2 ≥ 0

Thus
∇f0(x) = 0

Equality constrained problem
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4-10 II

⇐ Easy. For any feasible y ,

Ay = b

∇f0(x)(y−x) = −νTA(y−x) = −νT (b−b) = 0 ≥ 0

So x is optimal

⇒: more complicated. We only do a rough
explanation
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4-10 III

From optimality condition

∇f0(x)Tν = ∇f0(x)T ((x + ν)− x) ≥ 0,∀ν ∈ N(A)

N(A) is a subspace in 2-D. Thus

ν ∈ N(A)⇒ −ν ∈ N(A)
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4-10 IV

N(A)

∇f0
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4-10 V

We have

∇f0(x)Tν = 0,∀ν ∈ N(A)

∇f0(x) ⊥ N(A),∇f0(x) ∈ R(AT )

⇒ ∃ν such that ∇f0(x) + ATν = 0

Minimization over nonnegative orthant

⇐ Easy
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4-10 VI

For any y � 0,

∇i f0(x)(yi − xi) =

{
∇i f0(x)yi ≥ 0 if xi = 0

0 if xi > 0.

Therefore,
∇f0(x)T (y − x) ≥ 0

and
x is optimal
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4-10 VII

⇒ If xi = 0, we claim

∇i f0(x) ≥ 0

Otherwise,
∇i f0(x) < 0

Let
y = x except yi →∞

∇f0(x)T (y − x) = ∇i f0(x)(yi − xi)→ −∞
This violates the optimality condition
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4-10 VIII

If xi > 0, we claim

∇i f0(x) = 0

Otherwise, assume

∇i f0(x) > 0

Consider

y = x except yi = xi/2 > 0
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4-10 IX

It is feasible. Then

∇f0(x)T (y−x) = ∇i f0(x)(yi−xi) = −∇i f0(x)xi/2 < 0

violates the optimality condition. The situation for

∇i f0(x) < 0

is similar
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4-23: examples I

c̄ ≡ E (C )

Σ ≡ EC ((C − c̄)(C − c̄))

Var(CTx) = EC ((CTx − c̄Tx)(CTx − c̄Tx))

= EC (xT (C − c̄)(C − c̄)Tx)

= xTΣx
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4-25: second-order cone programming I

Cone was defined on slide 2-8

{(x , t) | ‖x‖ ≤ t}
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4-35: generalized inequality constraint I

fi ∈ Rn → Rki Ki -convex:

fi(θx + (1− θ)y) �Ki
θfi(x) + (1− θ)fi(y)

See page 3-31
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4-37: LP and SOCP as SDP I

LP and equivalent SDP

Ax =

a11 · · · a1n
...

am1 · · · amn

x1
...
xn



x1

a11
. . .

am1

+ · · ·+ xn

a1n
. . .

amn


−

b1
. . .

bm

 � 0
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4-37: LP and SOCP as SDP II
For SOCP and SDP we will use results in 4-39:[

tIp×p Ap×q
AT tIq×q

]
� 0⇔ ATA � t2Iq×q, t ≥ 0

Now
p = m, q = 1

A = Aix + bi , t = cTi x + di

‖Aix + bi‖2 ≤ (cTi x + di)
2,

cTi x + di ≥ 0

Thus
‖Aix + bi‖ ≤ cTi x + di
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4-39: matrix norm minimization I

Following 4-38, we have the following equivalent
problem

min t

subject to ‖A‖2 ≤ t

We then use

‖A‖2 ≤ t ⇔ ATA � t2I , t ≥ 0

⇔
[
tI A
AT tI

]
� 0
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4-39: matrix norm minimization II

to have the SDP

min t

subject to

[
tI A(x)

A(x)T tI

]
� 0

Next we prove[
tIp×p Ap×q
AT tIq×q

]
� 0⇔ ATA � t2Iq×q, t ≥ 0
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4-39: matrix norm minimization III
⇒ we immediately have

t ≥ 0

If t > 0,[
−vTAT tvT

] [tIp×p Ap×q
AT tIq×q

] [
−Av
tv

]
=
[
−vTAT tvT

] [ −tAv + tAv
−ATAv + t2v

]
=t(t2vTv − vTATAv) ≥ 0

vT (t2I − ATA)v ≥ 0,∀v
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4-39: matrix norm minimization IV
and hence

t2I − ATA � 0

If t = 0 [
−vTAT vT

] [ 0 A
AT 0

] [
−Av
v

]
=
[
−vTAT vT

] [ Av
−ATAv

]
=− 2vTATAv ≥ 0,∀v

Therefore
ATA � 0
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4-39: matrix norm minimization V

⇐ Consider [
uT vT

] [ tI A
AT tI

] [
u
v

]
=
[
uT vT

] [ tu + Av
ATu + tv

]
=tuTu + 2vTATu + tvTv

We hope to have

tuTu + 2vTATu + tvTv ≥ 0,∀(u, v)
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4-39: matrix norm minimization VI
If t > 0

min
u

tuTu + 2vTATu + tvTv

has optimum at

u =
−Av
t

We have

tuTu + 2vTATu + tvTv

=tvTv − vTATAv

t

=
1

t
vT (t2I − ATA)v ≥ 0.
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4-39: matrix norm minimization VII
Hence [

tI A
AT tI

]
� 0

If t = 0
ATA � 0

vTATAv ≤ 0, vTATAv = ‖Av‖2 = 0

Thus
Av = 0,∀v[

uT vT
] [ 0 A

AT 0

] [
u
v

]
=
[
uT vT

] [ 0
ATu

]
= 0 ≥ 0
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4-39: matrix norm minimization VIII

Thus [
0 A
AT 0

]
� 0
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4-40: Vector optimization I

Though

f0(x) is a vector

note that

fi(x) is still Rn → R1

K -convex

See 3-31 though we didn’t discuss it earlier
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4-41: optimal and pareto optimal points I

Optimal

O ⊆ {x}+ K

Pareto optimal

(x − K ) ∩ O = {x}
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5-3: Lagrange dual function I

Note that g is concave no matter if the original
problem is convex or not

f0(x) +
∑

λi fi(x) +
∑

νihi(x)

is convex (linear) in λ, ν for each x
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5-3: Lagrange dual function II
Use pointwise supremum on 3-16

sup
x∈D

(−f0(x)−
∑

λi fi(x)−
∑

νihi(x))

is convex. Hence

inf(f0(x) +
∑

λi fi(x) +
∑

νihi(x))

is concave. Note that

− sup(− · · · ) = −convex

= inf(· · · ) = concave
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5-8: Lagrange dual and conjugate function
I

f ∗0 (−ATλ− cTν)

= sup
x

((−ATλ− cTν)Tx − f0(x))

=− inf
x

(f0(x) + (ATλ + cTν)Tx)
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5-10: weak and strong duality I

We don’t discuss the SDP problem on this slide
because we omitted 5-7
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5-11: Slater’s constraint qualification I

We omit the proof because of no time

“linear inequality do not need to hold with strict
inequality”: for linear inequalities we DO NOT need
constraint qualification

We will see some explanation later

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 117 / 199



5-12: inequality from LP I

If we have only linear constraints, then constraint
qualification holds
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5-15: geometric interpretation I

Explanation of g(λ): when λ is fixed

λu + t = ∆

is a line. We lower ∆ until it touches the boundary
of G

The ∆ value then becomes g(λ)

When
u = 0⇒ t = ∆

so we see the point marked as g(λ) on t-axis
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5-15: geometric interpretation II

We have λ ≥ 0, so

λu + t = ∆

must be like

rather than
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5-15: geometric interpretation III

Explanation of p∗:

In G , only points satisfying

u ≤ 0

are feasible
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5-16 I

We do not discuss a formal proof of

Slater condition ⇒ strong duality

Instead, we explain this result by figures

Reason of using A: G may not be convex

Example:

min x2

subject to x + 2 ≤ 0
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5-16 II
This is a convex optimization problem

G = {(x + 2, x2) | x ∈ R}

is only a quadratic curve
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5-16 III

The curve is not convex

However, A is convex

A
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5-16 IV
Primal problem:

x = −2

optimal objective value = 4

Dual problem:

g(λ) = min
x

x2 + λ(x + 2)

x = −λ/2

max
λ≥0
−λ

2

4
+ 2λ

optimal λ = 4
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5-16 V

optimal objective value = −16

4
+ 8 = 4

Proving that A is convex

(u1, t1) ∈ A, (u2, t2) ∈ A

∃x1, x2 such that

f1(x1) ≤ u1, f0(x1) ≤ t1

f1(x2) ≤ u2, f0(x2) ≤ t2

Consider
x = θx1 + (1− θ)x2
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5-16 VI

We have
f1(x) ≤ θu1 + (1− θ)u2

f0(x) ≤ θt1 + (1− θ)t2

So [
u
t

]
= θ

[
u1

t1

]
+ (1− θ)

[
u2

t2

]
∈ A

Note that we have

Slater condition ⇒ strong duality

However, it’s possible that Slater condition doesn’t
hold but strong duality holds
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5-16 VII

Example from exercise 5.22:

min x

subject to x2 ≤ 0

Slater condition doesn’t hold because no x satisfies

x2 < 0

G = {(x2, x) | x ∈ R}
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5-16 VIII

u

t

There is only one feasible point (0, 0)
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5-16 IX

u

t

A
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5-16 X

g(λ) = min
x

x + x2λ

x =

{
−1/(2λ) if λ > 0

−∞ if λ = 0

Dual problem
max
λ≥0
−1/(4λ)

λ→∞, objective value → 0

d∗ = 0, p∗ = 0

Strong duality holds
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5-17: complementary slackness I

In deriving the inequality we use

hi(x
∗) = 0 and fi(x

∗) ≤ 0

Complementary slackness

compare the earlier results in 4-10
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5-19: KKT conditions for convex problem
I

For the problem on p5-16, neither slater condition
nor KKT condition holds

1 6= λ0

Therefore, for convex problems,

KKT ⇒ optimality

but not vice versa.

Next we explain why for linear constraints we don’t
need constraint qualification
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5-19: KKT conditions for convex problem
II

Consider the situation of inequality constraints only:

min f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Consider an optimial solution x . We would like to
prove that x satisfies KKT condition

Because x is optimal, from the optimality condition
on slide 4-9, for any feasible direction δx ,

∇f0(x)Tδx ≥ 0.
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5-19: KKT conditions for convex problem
III

A feasible δx means

fi(x + δx) ≤ 0,∀i

Because

fi(x + δx) ≈ fi(x) +∇fi(x)Tδx

from
fi(x) ≤ 0,∀i

we have

∇fi(x)Tδx ≤ 0 if fi(x) = 0.
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5-19: KKT conditions for convex problem
IV

We claim that

∇f0(x) =
∑

λi≥0,fi (x)=0

−λi∇fi(x) (4)

Assume the result is wrong. First let’s consider

∇f0(x) =linear combination of {∇fi(x) | fi(x) = 0}
+ ∆,

where

∆ 6= 0 and ∆T∇fi(x) = 0,∀i : fi(x) = 0
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5-19: KKT conditions for convex problem
V

Then there exists α < 0 such that

δx ≡ α∆

satisfies
∇fi(x)Tδx = 0 if fi(x) = 0

fi(x + δx) ≤ 0 if fi(x) < 0

and
∇f0(x)Tδx = α∆T∆ < 0

This contradicts the optimality condition
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5-19: KKT conditions for convex problem
VI

By a similar setting we can further prove (4).

Assume

∇f0(x) =
∑

i :fi (x)=0

−λi∇fi(x)

and there exists i ′ such that

λi ′ < 0,∇fi ′(x) 6= 0, and fi ′(x) = 0
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5-19: KKT conditions for convex problem
VII

Let

λ̄ = arg min
λ
‖∇fi ′(x)−

∑
i :i 6=i ′,fi (x)=0

∇fi(x)λi‖

∆ = ‖∇fi ′(x)−
∑

i :i 6=i ′,fi (x)=0

∇fi(x)λ̄i‖

Then
∇fi(x)T∆ = 0,∀i 6= i ′, fi(x) = 0 (5)
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5-19: KKT conditions for convex problem
VIII

We have
∇fi ′(x)T∆ ≥ 0

If
∇fi ′(x)T∆ = 0

then
−λi ′∇fi ′(x)

can be rearranged to use linear combination of

{∇fi(x) | i 6= i ′, fi(x) = 0}
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5-19: KKT conditions for convex problem
IX

Otherwise
∇fi ′(x)T∆ > 0

Let
δx = α∆, α < 0.

From (5),

∇fi(x)Tδx = 0,∀i 6= i ′, fi(x) = 0

∇fi ′(x)Tδx = α∇fi ′(x)T∆ < 0.

Hence δx is a feasible direction.
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5-19: KKT conditions for convex problem
X

However,

∇f0(x)Tδx = −αλi ′∇fi ′(x)T∆ < 0

contradicts the optimality condition

This proof is not rigourous because of ≈
For linear the proof becomes rigourous
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5-25 I

Explanation of f ∗0 (ν)

inf
y

(f0(y)− νTy)

=− sup
y

(νTy − f0(y)) = −f ∗0 (ν)

where f ∗0 (ν) is the conjugate function
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5-26 I

The original problem

g(λ, ν) = inf
x
‖Ax − b‖ = constant

Dual norm:

‖ν‖∗ ≡ sup{νTy | ‖y‖ ≤ 1}

If ‖ν‖∗ > 1,

νTy ∗ > 1, ‖y ∗‖ ≤ 1
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5-26 II
inf ‖y‖+ νTy

≤‖ − y ∗‖ − νTy ∗ < 0

‖ − ty ∗‖ − νT (ty ∗)→ −∞ as t →∞
Hence

inf
y
‖y‖+ νTy = −∞

If ‖ν‖∗ ≤ 1, we claim that

inf
y
‖y‖+ νTy = 0

y = 0⇒ ‖y‖+ νTy = 0
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5-26 III

If ∃y such that

‖y‖+ νTy < 0

then
‖ − y‖ < −νTy

We can scale y so that

sup{νTy | ‖y‖ ≤ 1} > 1

but this causes a contradiction
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5-27: implicit constraint I

The dual function

cTx + νT (Ax − b)

=− bTν + xT (ATν + c)

inf
−1≤xi≤1

xi(A
Tν + c)i = −|(ATν + c)i |
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5-30: semidefinite program I

From 5-29 we need that Z is non-negative in the
dual cone of Sk

+

Dual cone of Sk
+ is Sk

+ (we didn’t discuss dual cone
so we assume this result)

Why
tr(Z (· · · ))?

We are supposed to do component-wise produt
between

Z and x1F1 + · · ·+ xnFn − G
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5-30: semidefinite program II

Trace is the component-wise product

tr(AB)

=
∑
i

(AB)ii

=
∑
i

∑
j

AijBji =
∑
i

∑
j

AijBij

Note that we take the property that B is symmetric
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7-4 I

Uniform noise

p(z) =

{
1

2a if |z | ≤ a

0 otherwise
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8-10: Dual of maximum margin problem I

Largangian:

‖a‖
2
−
∑
i

λi(a
Txi + b − 1) +

∑
i

µi(a
Tyi + b + 1)

=
‖a‖

2
+ aT (−

∑
i

λixi +
∑
i

µiyi)

+ b(−
∑
i

λi +
∑
i

µi) +
∑
i

λi +
∑
i

µi

Because of
b(−

∑
i

λi +
∑
i

µi)
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8-10: Dual of maximum margin problem II

we have

inf
a,b

L

=

{
infa

‖a‖
2 −

∑
i λia

Txi +
∑

i µia
Tyi if

∑
i λi =

∑
i µi

−∞ if
∑

i λi 6=
∑

i µi

For

inf
a

‖a‖
2
−
∑
i

λia
Txi +

∑
i

µia
Tyi
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8-10: Dual of maximum margin problem
III

we can denote it as

inf
a

‖a‖
2

+ vTa

where v is a vector. We cannot do derivative because
‖a‖ is not differentiable. Formal solution:
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8-10: Dual of maximum margin problem
IV

Case 1: If ‖v‖ ≤ 1/2:

aTv ≥ −‖a‖‖v‖ ≥ −‖a‖
2

so

inf
a

‖a‖
2

+ vTa ≥ 0.

However,

a = 0→ ‖a‖
2

+ vTa = 0
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8-10: Dual of maximum margin problem V
Therefore

inf
a

‖a‖
2

+ vTa = 0.

If ‖v‖ > 1/2, let

a =
−tv
‖v‖

‖a‖
2

+ vTa

=
t

2
− t‖v‖

=t(
1

2
− ‖v‖)→∞ if t → −∞
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8-10: Dual of maximum margin problem
VI

Thus

inf
a

‖a‖
2

+ vTa = −∞
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8-14

θ =

vec(P)
q
r

 ,F (z) =



...
zizj

...
zi
...
1


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10-3: initial point and sublevel set I

The condition that S is closed if

f (x)→∞ as x → boundary of domain f

Proof: if not, consider

{xi} ⊂ S

such that
xi → boundary

Then
f (xi)→∞ > f (x0)
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10-3: initial point and sublevel set II

and
S is not closed

Example

f (x) = log(
m∑
i=1

exp(aTi x + bi))

domain = Rn
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10-3: initial point and sublevel set III

Example

f (x) = −
∑
i

log(bi − aTi x)

domain 6= Rn

We use the condition that

f (x)→∞ as x → boundary of domain f
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10-4: strong convexity and implications I

S is bounded. Otherwise, there exists a set

{yi | yi = x + ∆i} ⊂ S

satisfying
lim
i→∞
|∆i | =∞

Then

f (yi) ≥ f (x) +∇f (x)T∆i +
m

2
‖∆i‖2 →∞

This contradicts

f (y) ≤ f (x0)
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10-4: strong convexity and implications II
Proof of

p∗ > −∞
and

f (x)− p∗ ≤ 1

2m
‖∇f (x)‖2

From

f (y) ≥ f (x) +∇f (x)T (y − x) +
m

2
‖x − y‖2

Minimize the right-hand side with respect to y

∇f (x) + m(y − x) = 0
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10-4: strong convexity and implications III

ỹ = x − ∇f (x)

m

f (y) ≥ f (x) +∇f (x)T (ỹ − x) +
m

2
‖ỹ − x‖2

= f (x)− 1

2m
‖∇f (x)‖2,∀y

Then

p∗ ≥ f (x)− 1

2m
‖∇f (x)‖2

and

f (x)− p∗ ≤ 1

2m
‖∇f (x)‖2
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10-5: descent methods I

If
f (x + t∆x) < f (x)

then
∇f (x)T∆x < 0

Proof: From the first-order condition of a convex
function

f (x + t∆x) ≥ f (x) + t∇f (x)T∆x

Then

t∇f (x)T∆x ≤ f (x + t∆x)− f (x) < 0
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10-6: line search types I

Why

α ∈ (0,
1

2
)?

The use of 1/2 is for convergence though we won’t
discuss details

Finite termination of backtracking line search. We
argue that ∃t∗ > 0 such that

f (x + t∆x) < f (x) + αt∇f (x)T∆x ,∀t ∈ (0, t∗)

Otherwise,
∃{tk} → 0
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10-6: line search types II

such that

f (x + tk∆x) ≥ f (x) + αtk∇f (x)T∆x ,∀k

lim
tk→0

f (x + tk∆x)− f (x)

tk
=∇f (x)T∆x ≥ α∇f (x)T∆x

However,

∇f (x)T∆x < 0 and α > 0

cause a contradiction
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10-6: line search types III

Geometric interpretation: the tangent line passes
through (0, f (x)), so the equation is

y − f (x)

t − 0
= ∇f (x)T∆x

Because
∇f (x)T∆x < 0,

we see that the line of

f (x) + αt∇f (x)T∆x

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 167 / 199



10-6: line search types IV

is above that of

f (x) + t∇f (x)T∆x
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10-7 I

Linear convergence. We consider exact line search;
proof for backtracking line search is more
complicated

S closed and bounded

∇2f (x) � MI ,∀x ∈ S

f (y) ≤ f (x) +∇f (x)T (y − x) +
M

2
‖y − x‖2

Solve

min
t

f (x)− t∇f (x)T∇f (x) +
t2M

2
∇f (x)T∇f (x)
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10-7 II

t =
1

M

f (xnext) ≤ f (x− 1

M
∇f (x)) ≤ f (x)− 1

2M
∇f (x)T∇f (x)

The first inequality is from the fact that we use
exact line search

f (xnext)− p∗ ≤ f (x)− p∗ − 1

2M
∇f (x)T∇f (x)

From slide 10-4,

−‖∇f (x)‖2 ≤ −2m(f (x)− p∗)
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10-7 III

Hence

f (xnext)− p∗ ≤ (1− m

M
)(f (x)− p∗)
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10-8 I

Assume

xk1 = γ(
γ − 1

γ + 1
)k , xk2 = (−γ − 1

γ + 1
)k ,

∇f (x1, x2) =

[
x1

γx2

]
min
t

1

2
((x1 − tx1)2 + γ(x2 − tγx2)2)

min
t

1

2
(x2

1 (1− t)2 + γx2
2 (1− tγ)2)
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10-8 II

−x2
1 (1− t) + γx2

2 (1− tγ)(−γ) = 0

−x2
1 + tx2

1 − γ2x2
2 + γ3tx2

2 = 0

t(x2
1 + γ3x2

2 ) = x2
1 + γ2x2

2

t =
x2

1 + γ2x2
2

x2
1 + γ3x2

2

=
γ2(γ−1

γ+1)2k + γ2(γ−1
γ+1)2k

γ2(γ−1
γ+1)2k + γ3(γ−1

γ+1)2k

=
2γ2

γ2 + γ3
=

2

1 + γ

xk+1 = xk − t∇f (xk) =

[
xk1 (1− t)
xk2 (1− γt)

]
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10-8 III

xk+1
1 = γ(

γ − 1

γ + 1
)k(

γ − 1

1 + γ
) = γ(

γ − 1

γ + 1
)k+1

xk+1
2 = (−γ − 1

γ + 1
)k(1− 2γ

1 + γ
)

= (−γ − 1

γ + 1
)k(

1− γ
1 + γ

) = (−γ − 1

γ + 1
)k+1

Why gradient is orghogonal to the tangent line of
the contour curve?
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10-8 IV

Assume f (g(t)) is the countour with

g(0) = x

Then
0 = f (g(t))− f (g(0))

0 = lim
t→0

f (g(t))− f (g(0))

t
= lim

t→0
∇f (g(t))T∇g(t)

=∇f (x)T∇g(0)
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10-8 V

where

x + t∇g(0)

is the tangent line
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10-10 I

linear convergence: from slide 10-7

f (xk)− p∗ ≤ ck(f (x0)− p∗)

log(ck(f (x0)− p∗)) = k log c + log(f (x0)− p∗)

is a straight line. Note that now k is the x-axis
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10-11: steepest descent method I

(unnormalized) steepest descent direction:

∆xsd = ‖∇f (x)‖∗∆xnsd

Here ‖ · ‖∗ is the dual norm

We didn’t discuss much about dual norm, but we
can still explain some examples on 10-12
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10-12 I

Euclidean: ∆xnsd is by solving

min ∇f Tv
subject to ‖v‖ = 1

∇f Tv = ‖∇f ‖‖v‖ cos θ = −‖∇f ‖ when cos θ = π

∆xnsd =
−∇f (x)

‖∇f (x)‖
‖∇f (x)‖∗ = ‖∇f (x)‖

‖∇f (x)‖∗∆xnsd = ‖∇f (x)‖∗
−∇f (x)

‖∇f (x)‖
= −∇f (x)
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10-12 II

Quadratic norm: ∆xnsd is by solving

min ∇f Tv
subject to vTPv = 1

Now
‖v‖P =

√
vTPv ,

where P is symmetric positive definite
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10-12 III
Let

w = P1/2v

The optimization problem becomes

min
w

∇f TP−1/2w

subject to ‖w‖ = 1

optimal w =
−P−1/2∇f
‖P−1/2∇f ‖

=
−P−1/2∇f√
∇f TP−1∇f
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10-12 IV

optimal v =
−P−1∇f√
∇f TP−1∇f

Dual norm
‖z‖∗ = ‖P−1/2z‖

Therefore

∆xsd =
√
∇f TP−1∇f −P−1∇f√

∇f TP−1∇f
= −P−1∇f
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10-12 V

Explanation of the figure:

−∇f (x)T∆xnsd = ‖ − ∇f (x)‖‖∆xnsd‖ cos θ

‖ − ∇f (x)‖ is a constant. From a point ∆xnsd on
the boundary, the projected point on −∇f (x)
indicates

‖∆xnsd‖ cos θ

In the figure, we see that the chosen ∆xnsd has the
largest ‖∆xnsd‖ cos θ

We omit the discusssion of l1-norm
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10-13 I

The two figures are by using two P matrices

The left one has faster convergence

Gradient descent after change of variables

x̄ = P1/2x , x = P−1/2x̄

min
x

f (x)⇒ min
x̄

f (P−1/2x̄)

x̄ ← x̄ − αP−1/2∇x f (P−1/2x̄)

P1/2x ← P1/2x − αP−1/2∇x f (x)

x ← x − αP−1∇x f (x)
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10-14 I

x

f ′(x)
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10-14 II

Solve
f ′(x) = 0

Fining the tangent line at xk :

y − f ′(xk)

x − xk
= f ′′(xk)

xk : the current iterate
Let y = 0

xk+1 = xk − f ′(xk)/f ′′(xk)
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10-16 I

f̂ (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x)

∇f̂ (y) = 0 = ∇f (x) +∇2f (x)(y − x)

y − x = −∇2f (x)−1∇f (x)

inf
y
f̂ (y) = f (x)− 1

2
∇f (x)T∇2f (x)−1∇f (x)

f (x)− inf
y
f̂ (y) =

1

2
λ(x)2
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10-16 II

Norm of the Newton step in the quadratic Hessian norm

∆xnt = −∇2f (x)−1∇f (x)

∆xTnt∇2f (x)∆xnt = ∇f (x)T∇2f (x)−1∇f (x) = λ(x)2

Directional derivative in the Newton direction

lim
t→0

f (x + t∆nt)− f (x)

t
=∇f (x)T∆xnt

=−∇f (x)T∇2f (x)−1∇f (x) = −λ(x)2
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10-16 III

Affine invariant

f̄ (y) ≡ f (Ty) = f (x)

Assume T is an invertable square matrix. Then

λ̄(y) = λ(Ty)

Proof:
∇f̄ (y) = TT∇f (Ty)

∇2f̄ (y) = TT∇2f (Ty)T
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10-16 IV

λ̄(y)2 = ∇f̄ (y)T∇2f̄ (y)−1∇f̄ (y)

= ∇f (Ty)TTT−1∇2f (Ty)−1T−TTT∇f (Ty)

= ∇f (Ty)T∇2f (Ty)−1∇f (Ty)

= λ(Ty)2
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10-17 I

Affine invariant

∆ynt = ∇2f̄ (y)−1∇f̄ (y)

= T−1∇2f (Ty)−1∇f (Ty)

= T−1∆xnt

Note that
yk = T−1xk

so
yk+1 = T−1xk+1
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10-17 II

But how about line search

∇f̄ (y)T∆ynt

=∇f (Ty)TTT−1∆xnt

=∇f (x)T∆xnt
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10-19 I

η ∈ (0,
m2

L
)

‖∇f (xk)‖ ≤ η ≤ m2

L

L

2m2
‖∇f (xk)‖ ≤ 1

2
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10-20 I

f (xl)− f (x∗)

≤ 1

2m
‖∇f (xl)‖2 (from p10-4)

≤ 1

2m

4m4

L2
(

1

2
)2l−k ·2

=
2m3

L2
(

1

2
)2l−k+1 ≤ ε

Let

ε0 =
2m3

L2
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10-20 II
log2 ε0 − 2l−k+1 ≤ log2 ε

2l−k+1 ≥ log2(ε0/ε)

l ≥ k − 1 + log2 log2(ε0/ε)

k ≤ f (x0)− p∗

r
In at most

f (x0)− p∗

r
+ log2 log2(ε0/ε)

iterations, we have

f (xl)− f (x∗) ≤ ε
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10-29: implementation I

λ(x) = (∇f (x)∇2f (x)−1∇f (x))1/2

= (gTL−TL−1g)1/2 = ‖L−1g‖2
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10-30: example of dense Newton systems
with structure I

∇f (x) =

ψ′1(x1)
...

ψ′n(xn)

+ AT∇ψ0(Ax + b)

∇2f (x) =

ψ′′1 (x1)
. . .

ψ′′n(xn)

+ AT∇2ψ2
0(Ax + b)A

method 2:
∆x = D−1(−g − ATLow)
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10-30: example of dense Newton systems
with structure II

LT0 AD
−1(−g − ATL0w) = w

(I + LT0 AD
−1ATL0)w = −LT0 AD−1g

Cost

L0 : p × p

ATL0 : n × p, cost : O(np)

(LT0 A)D−1(ATL0) : O(p2n)

Chih-Jen Lin (National Taiwan Univ.) Optimization and Machine Learning 198 / 199



10-30: example of dense Newton systems
with structure III

Note that Cholesky factorization of H0 costs

1

3
p3 ≤ p2n

as

p � n
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