Logistic Regression

For a label-feature pair (y, x), assume the probability model

$$p(y|x) = \frac{1}{1 + e^{-yw^T x}}.$$

w is the parameter to be decided

Assume

$$(y_i, x_i), \ i = 1, \ldots, l$$

are training instances
Logistic regression finds \mathbf{w} by maximizing the following likelihood

$$\max_{\mathbf{w}} \prod_{i=1}^{l} p(y_i | \mathbf{x}_i). \quad (1)$$

Regularized logistic regression

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{l} \log \left(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i} \right). \quad (2)$$

C: regularization parameter decided by users
Gradient-descent Methods

- Given initial \mathbf{w}^0 and constants $\eta \in (0, 1)$.
- For $k = 0, 1, \ldots$
 - Calculate the direction $\mathbf{s}^k = -\nabla f(\mathbf{w}^k)$
 - Find α_k satisfying
 \[
 f(\mathbf{w}^k + \alpha_k \mathbf{s}^k) \leq f(\mathbf{w}^k) + \eta \alpha_k \nabla f(\mathbf{w}^k)^T \mathbf{s}^k
 \]
 - Update $\mathbf{w}^{k+1} = \mathbf{w}^k + \alpha_k \mathbf{s}^k$.
Gradient

We note that gradient takes the following form

\[\nabla f(w) = w + C \sum_{i=1}^{l} \left(\frac{1}{1 + e^{-y_i w^T x_i}} - 1 \right) y_i x_i, \]
To find α_k satisfying

$$f(w^k + \alpha_k s^k) \leq f(w^k) + \eta \alpha_k \nabla f(w^k)^T s^k$$

Sequentially check $\alpha_k = 1, 1/2, 1/4, 1/8$

Recall the function is

$$\frac{1}{2} w^T w + C \sum_{i=1}^{I} \log \left(1 + e^{-y_i w^T x_i}\right).$$

You save time by the property

$$(w + \alpha d)^T x = w^T x + \alpha d^T x$$
You can keep

\[(w^{k+1})^T x = (w^k + \alpha_k s^k)^T x\]

for the next iteration

But error propagation is a concern
Stopping Condition

- You can use

$$\|\nabla f(w^k)\| \leq \epsilon \|\nabla f(w^0)\|$$

- This is a relative condition
- You may choose

$$\epsilon = 0.01$$

Note that a smaller ϵ will cause more iterations
- You may need to set a maximal number of iterations as well
Newton Methods

- Newton direction

\[
\min_s \quad \nabla f(w^k)^T s + \frac{1}{2} s^T \nabla^2 f(w^k) s
\]

\(w^k \): current iterate

- This is the same as solving Newton linear system

\[
\nabla^2 f(w^k) s = -\nabla f(w^k)
\]
Newton Methods (Cont’d)

- Given initial \(w^0 \) and constants \(\eta \in (0, 1) \).
- For \(k = 0, 1, \ldots \):
 - Solve Newton linear system to obtain direction \(s^k \).
 - Find \(\alpha_k \) satisfying
 \[
 f(w^k + \alpha_k s^k) \leq f(w^k) + \eta \alpha_k \nabla f(w^k)^T s^k
 \]
 - Update \(w^{k+1} = w^k + \alpha_k s^k \).
Newton Linear System

- Hessian $\nabla^2 f(w^k)$ too large to be stored

$$\nabla^2 f(w^k) : n \times n, \quad n : \text{number of features}$$

- But Hessian has a special form

$$\nabla^2 f(w) = \mathcal{I} + CX^TDX$$

- \mathcal{I}: identity.

$$X = \begin{bmatrix}
 x_1^T \\
 \vdots \\
 x_l^T
\end{bmatrix}$$

is the data matrix.
Newton Linear System (Cont’d)

- D diagonal with

$$D_{ii} = \frac{e^{-y_i w^T x_i}}{(1 + e^{-y_i w^T x_i})^2}$$

- Using Conjugate Gradient method to solve the linear system.

$$\nabla^2 f(w^k)s = -\nabla f(w^k)$$

- Only a sequence of Hessian-vector products are needed

$$\nabla^2 f(w)s = s + C \cdot X^T(D(Xs))$$

- Therefore, we have a Hessian-free approach
Conjugate Gradient

Given $\xi_k < 1$. Let $s^0 = 0$, $r^0 = -\nabla f(w^k)$, and $d^0 = r^0$. For $i = 0, 1, \ldots$ (inner iterations)

- If
 \[||r^i|| \leq \xi_k ||\nabla f(w^k)||, \]
 then output $s^k = s^i$ and stop.

- $\alpha_i = ||r^i||^2 / (||d^i||^T \nabla^2 f(w^k)d^i)$.
- $s^{i+1} = s^i + \alpha_i d^i$.
- $r^{i+1} = r^i - \alpha_i \nabla^2 f(w^k)d^i$.
- $\beta_i = ||r^{i+1}||^2 / ||r^i||^2$.
- $d^{i+1} = r^{i+1} + \beta_i d^i$.

The CG stopping condition

\[\| r^i \| \leq \xi_k \| \nabla f(w^k) \|, \]

is important.

It’s a relative stopping condition. It becomes strict in the end because of small \(\| \nabla f(w^k) \| \)

Therefore, we only approximately obtain the Newton direction.
In addition to line search, trust region is another method to ensure sufficient decrease; see the implementation in LIBLINEAR (Lin et al., 2007) http://www.csie.ntu.edu.tw/~cjlin/liblinear

Note that α_i in CG is different from α_k in line search procedure

Check Golub and Van Loan (1996) for details of conjugate gradient methods
Homework

- Implement
 - Gradient-descent method with line search
 - Newton method with line search and CG
on MATLAB, Octave, Python, or R
- MATLAB and Octave may be more suitable because of their good support on matrix operations
- Train the data set “kdd2010 (bridge to algebra)” at LIBSVM Data Set http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
- To read data to MATLAB/Octave, check libsvmread.c in the matlab directory of LIBLINEAR
Let’s use

\[\eta = 0.01, \xi_k = 0.1, \mathbf{w}^0 = 0 \]

For regularization parameter, set \(C = 0.1 \)

It is known that a larger \(C \) causes more iterations

You can check the correctness by comparing with the objective function value of LIBLINEAR (option -s 0 for logistic regression)

You may start with a smaller data set
For Newton method, you should observe that in final iterations, step size α becomes 1. If you don’t see that, you can try to use a smaller $C = 0.01$ and reduce ϵ to 0.001 or even smaller.

You want to compare gradient-descent and Newton methods.
You may also compare yours with LIBLINEAR. They differ in
- matlab versus C
- line search versus trust region to adjust the Newton direction

We require you to submit
- A report of ≤ 4 pages (without including code)
- Your code