
Project: A Study on GPU
Matrix-matrix Products

Please at least finish the requirements marked with
red. Then do as much as you can for the rest.

October 14, 2025

October 14, 2025 1 / 17

Background

In our lecture, we discussed why GPU is very
effective for massive parallel operation

We also discussed block algorithms on CPU for
reducing the cost of memory access in matrix-matrix
products

In this project, we want to study common
techniques to accelerate matrix products on GPU
and compare with optimized libraries

October 14, 2025 2 / 17

Overall Requirements

In this project, you are required to

study, implement, and analyze at least three kernels
(two designated + one optional) for matrix
multiplication

compare the performance of the above kernels with
existing optimized BLAS on GPU, such as cuBLAS

October 14, 2025 3 / 17

Structure

The following is just a sample of the structure for this
project. Feel free to study more on what you are
interested in

Kernel 1

Kernel 2

Compare Kernel 2 with CPU Block Algorithm

Kernel 3

Compare with existing optimized BLAS on GPU

October 14, 2025 4 / 17

Kernel 1: Memory Coalescing Kernel I

In our slides of doing matrix multiplication, we use

int i = blockDim.y*blockIdx.y +

threadIdx.y;

int j = blockDim.x*blockIdx.x +

threadIdx.x;

to assign which entry of C is calculated for each
thread

Alternatively, let us consider the one used in the
MatAdd kernel:

October 14, 2025 5 / 17

Kernel 1: Memory Coalescing Kernel II

int i = blockDim.x*blockIdx.x +

threadIdx.x;

int j = blockDim.y*blockIdx.y +

threadIdx.y;

Which is more efficient? Please compare the two
settings and explain the reason in detail

You are encouraged to draw some nice graphs to
illustrate the memory access pattern for each setting

October 14, 2025 6 / 17

Kernel 2: Tiled Matrix Multiplication I

For the second kernel, you want to utilize shared
memory within the same block to accelerate matrix
products.

Global memory can be accessed by all threads
Shared memory can only be accessed by
threads within the same block. It can be
declared using shared qualifier

Assume the matrices A ∈ RM×K , B ∈ RK×N , and
C ∈ RM×N

October 14, 2025 7 / 17

Kernel 2: Tiled Matrix Multiplication II

In this kernel, each thread still compute a Ci,j entry

To calculate Ci,j =
∑K

k=1Ai,kBk,j, we need to load
Ai,k and Bk,j for k = 1, . . . , K

Ai,1 is not only used for calculating Ci,j, but
also for

Ci,j+1 =
K∑
k=1

Ai,kBk,j+1, Ci,j+2 =
K∑
k=1

Ai,kBk,j+2,

and so on

October 14, 2025 8 / 17

Kernel 2: Tiled Matrix Multiplication III

Note that, the computation for
Ci,j+1, Ci,j+2, . . . may happen in the same
block, but elements like Ai,1, Ai,2, . . . are
repeatedly loaded for many times in different
thread
Therefore, the idea of Kernel 2 is to load
elements like Ai,1 to the shared memory so that
all threads in the same block can access it
without loading them for many times

October 14, 2025 9 / 17

Kernel 2: Tiled Matrix Multiplication IV

Specifically, suppose a block with dimension
(BM , BN) is responsible for calculating the
submatrix Ci:i+BN ,j:j+BM

, which is given by
Ci,j Ci,j+1 · · · Ci,j+BM−1
Ci+1,j Ci+1,j+1 · · · Ci+1,j+BM−1

...
...

Ci+BN−1,j Ci+BN−1,j+1 · · · Ci+BN−1,j+BM−1


We need the i-th to the (i+BN)-th rows of A and
j-th to the (j +BM)-th columns of B

October 14, 2025 10 / 17

Kernel 2: Tiled Matrix Multiplication V

See the following figure for the idea

1

October 14, 2025 11 / 17

Kernel 2: Tiled Matrix Multiplication VI

We split these rows in A and columns in B into T
tiles, say Atile

1 , . . . , Atile
T and Btile

1 , . . . , Btile
T

So Kernel 2 is like the following:
For each t = 1, . . . , T :

Load Atile
t and Btile

t to the shared memory
Ci:i+BN ,j:j+BM

← Ci:i+BN ,j:j+BM
+ Atile

t ×Btile
t

Please implement this kernel and compare the one
in the GPU course slides (including the performance
and analysis of the number of memory accesses)

1Source from https://siboehm.com/articles/22/CUDA-MMM.
October 14, 2025 12 / 17

https://siboehm.com/articles/22/CUDA-MMM

Kernel 2 vs. CPU Block Algorithm I

Motivation: the “tile” mentioned in Kernel 2 looks
similar to the “block” in the CPU block algorithm

However, they are actually different

Let us borrow the example from the course slides:A11 · · · A14
...

A41 · · · A44

B11 · · · B14
...

B41 · · · B44


=

[
A11B11 + · · ·+ A14B41 · · ·

... . . .

]
October 14, 2025 13 / 17

Kernel 2 vs. CPU Block Algorithm II

Here we abuse the notation a bit to denote
A11, A12, . . . a block/tile instead of a single element
In the CPU block algorithm, we sequentially do

C11 ← C11 + A11B11

...

C14 ← C14 + A11B14

 keep A11 in memory

C11 ← C11 + A12B21

...

C14 ← C14 + A12B24

 keep A12 in memory

...
October 14, 2025 14 / 17

Kernel 2 vs. CPU Block Algorithm III

However, in Kernel 2, within each thread block, we
sequentially do

C11 ← C11 + A11B11

C11 ← C11 + A12B21

C11 ← C11 + A13B31

C11 ← C11 + A14B41



October 14, 2025 15 / 17

Kernel 2 vs. CPU Block Algorithm IV

Is it possible to design a kernel so that within a
block, we do

C11 ← C11 + A11B11

C12 ← C12 + A11B12

C13 ← C13 + A11B13

C14 ← C14 + A11B14


so that we can store the A11 in the shared memory
to have a more efficient implementation?

Please study the feasibility or even do some
experiments

October 14, 2025 16 / 17

Kernel 3: Survey Other Kernels for
Acceleration I

For this kernel, please survey other techniques for
faster matrix multiplication on GPU

Please include the description, ideas, analysis, and
the source codes

October 14, 2025 17 / 17

