Project: A Study on GPU
Matrix-matrix Products

Please at least finish the requirements marked with
red. Then do as much as you can for the rest.

October 14, 2025

. Y,



-
Background

@ In our lecture, we discussed why GPU is very
effective for massive parallel operation

@ We also discussed block algorithms on CPU for
reducing the cost of memory access in matrix-matrix
products

@ In this project, we want to study common
techniques to accelerate matrix products on GPU
and compare with optimized libraries

. Gambr UL EEE )



-
Overall Requirements

In this project, you are required to

@ study, implement, and analyze at least three kernels
(two designated + one optional) for matrix
multiplication

@ compare the performance of the above kernels with
existing optimized BLAS on GPU, such as cuBLAS

. Gambr UL EEE &)



N
Structure

The following is just a sample of the structure for this
project. Feel free to study more on what you are
interested in

@ Kernel 1

@ Kernel 2

@ Compare Kernel 2 with CPU Block Algorithm

o Kernel 3

@ Compare with existing optimized BLAS on GPU

. b UL EEE )L



-
Kernel 1: Memory Coalescing Kernel |

@ In our slides of doing matrix multiplication, we use

int 1 = blockDim.y*blockIdx.y +
threadldx.y;

int j = blockDim.x*blockIdx.x +
threadIdx.x;

to assign which entry of (' is calculated for each

thread

@ Alternatively, let us consider the one used in the
MatAdd kernel:

. b UL EEE | B



-
Kernel 1: Memory Coalescing Kernel Il

int 1 = blockDim.x*blockIdx.x +
threadldx.x;
int j = blockDim.y*blockIdx.y +

threadIdx.y;

@ Which is more efficient? Please compare the two
settings and explain the reason in detail

@ You are encouraged to draw some nice graphs to
illustrate the memory access pattern for each setting

. b UL EEE )L



-
Kernel 2: Tiled Matrix Multiplication |

@ For the second kernel, you want to utilize shared
memory within the same block to accelerate matrix
products.

o Global memory can be accessed by all threads

o Shared memory can only be accessed by
threads within the same block. It can be
declared using __shared__ qualifier

@ Assume the matrices A € RM*K B ¢ REXN and
C c RMXN

. Gambr UL EEE )L



-
Kernel 2: Tiled Matrix Multiplication Il

@ In this kernel, each thread still compute a C; ; entry

e To calculate C; ; = Zszl A; 1, By j, we need to load
Ajpand By jfork=1,... K
o A;; is not only used for calculating Cj ;, but
also for

Cijr1 = E Ai 1By j+1, Cijro = E A 1B j12,
=1

and so on

. Gambr UL EEE G



-
Kernel 2: Tiled Matrix Multiplication Il

o Note that, the computation for
Cij+1, Cij+2, ... may happen in the same
block, but elements like A;1, A;9,... are
repeatedly loaded for many times in different
thread

o Therefore, the idea of Kernel 2 is to load
elements like A; ; to the shared memory so that
all threads in the same block can access it
without loading them for many times

. Gambr UL EEE O



-
Kernel 2: Tiled Matrix Multiplication 1V

e Specifically, suppose a block with dimension
(B, By) is responsible for calculating the
submatrix Cj.;y By j:j+B, Which is given by

Cij Cigr1 =+ Cijypy
Cit1j Cit1j+1 - Cis1j+By—1
CitBy-1j CitBy-1j+1 * CiyBy-1j+Bu-1

@ We need the i-th to the (i + By)-th rows of A and
j-th to the (j + Bjs)-th columns of B

. Gambr UL EEE W)L



-
Kernel 2: Tiled Matrix Multiplication V

@ See the following figure for the idea

Chunks wove.
across 4 L B

. Y,



-
Kernel 2: Tiled Matrix Multiplication VI

@ We split these rows in A and columns in B into T
tiles, say Al ... Able and Bile ... Bl
@ So Kernel 2 is like the following:
Foreacht=1,...,T:
o Load A and B! to the shared memory
o CiivByjij+Bu < CiitByjij+By + A x Bl
@ Please implement this kernel and compare the one

in the GPU course slides (including the performance
and analysis of the number of memory accesses)

1Source from https://siboehm.com/articles/22/CUDA-MMM.
] October 14, 2025 12/17


https://siboehm.com/articles/22/CUDA-MMM

-
Kernel 2 vs. CPU Block Algorithm |

@ Motivation: the “tile” mentioned in Kernel 2 looks
similar to the “block” in the CPU block algorithm

@ However, they are actually different
@ Let us borrow the example from the course slides:

Ay - Au| [Bu -+ Bu

Ay -+ Apl |Ba -+ By
_ AnBiy+ -+ AuBy

. b UL EEE )



-
Kernel 2 vs. CPU Block Algorithm Il

@ Here we abuse the notation a bit to denote
Aq1, Ao, ... a block/tile instead of a single element
@ In the CPU block algorithm, we sequentially do

Ci1 < Cii+ AnuBn )
: > keep A11 in memory
Ciy < Ciy + A1 By
Ci1 < Cii + AppByy )

> keep A19 in memory

Cy+Ciy+ A12BQ4,

. b UL EEE L



-
Kernel 2 vs. CPU Block Algorithm Il

@ However, in Kernel 2, within each thread block, we
sequentially do

Cii + Cii + A1 By )
Cii + Cii + ApBoy
Cii + Cy + AizBsy
C11 = C11 + A4By |

. Gmmbr UL EEE UL



-
Kernel 2 vs. CPU Block Algorithm IV

@ Is it possible to design a kernel so that within a
block, we do

Cii + Ci + Ay B )
Ci2 < Cio+ A1 B2
Ciz3 < Ci13+ A B3
Ciy < Cry + A1 By

-~

so that we can store the A;; in the shared memory
to have a more efficient implementation?

@ Please study the feasibility or even do some
experiments
. g oz



-
Kernel 3: Survey Other Kernels for

Acceleration |

@ For this kernel, please survey other techniques for
faster matrix multiplication on GPU

@ Please include the description, ideas, analysis, and
the source codes

. G UL EEE )0



