Summary of a Convolutional Layer I

- Padding and pooling are optional in a convolutional layer, but they are frequently used
- Thus we discuss details of considering all operations together.
- The whole convolutional layer involves the following procedure:

$$Z^{m,i} o ext{padding}$$
 $o ext{convolutional operations}$
 $o ext{pooling} o Z^{m+1,i},$ (1)

Summary of a Convolutional Layer II

where $Z^{m,i}$ and $Z^{m+1,i}$ are input and output of the mth layer, respectively.

 Let the following symbols denote image sizes at different stages of the convolutional layer.

```
a^m, b^m: size in the beginning a^m_{pad}, b^m_{pad}: size after padding a^m_{conv}, b^m_{conv}: size after convolution.
```

• The following table indicates how these values are a^{in} , b^{in} , d^{in} and a^{out} , b^{out} , d^{out} at different stages.

Summary of a Convolutional Layer III

Operation	Input	Output
Padding	$Z^{m,i}$	$pad(Z^{m,i})$
Convolution	$pad(Z^{m,i})$	$S^{m,i}$
Activation	$S^{m,i}$	$\sigma(S^{m,i})$ $Z^{m+1,i}$
Pooling	$\sigma(S^{m,i})$	$Z^{m+1,i}$

Operation	$a^{\rm in},\ b^{\rm in},\ d^{\rm in}$	$a^{\mathrm{out}}, b^{\mathrm{out}}, d^{\mathrm{out}}$
Padding	a^m , b^m , d^m	$a_{\text{pad}}^m, b_{\text{pad}}^m, d^m$
Convolution	$a_{\rm pad}^m, b_{\rm pad}^m, d^m$	$a_{\text{conv}}^m, b_{\text{conv}}^m, d^{m+1}$
Activation	a_{conv}^m , b_{conv}^m , d^{m+1}	a^m b^m d^{m+1}
Pooling	$a_{\text{conv}}^m, b_{\text{conv}}^m, d^{m+1}$	$a^{m+1}, b^{m+1}, d^{m+1}$

Summary of a Convolutional Layer IV

 Let the filter size, mapping matrices and weight matrices at the mth layer be

$$h^m$$
, P_{pad}^m , P_{ϕ}^m , $P_{\text{pool}}^{m,i}$, W^m , \boldsymbol{b}^m .

Then all operations can be summarized as

$$S^{m,i} = W^m \text{mat}(P_\phi^m P_{\text{pad}}^m \text{vec}(Z^{m,i}))_{h^m h^m d^m \times a_{\text{conv}}^m b_{\text{conv}}^m} + b^m \mathbb{1}_{a^{\text{conv}} b^{\text{conv}}}^T$$

$$Z^{m+1,i} = \max(P_{\text{pool}}^{m,i} \text{vec}(\sigma(S^{m,i})))_{d^{m+1} \times d^{m+1}b^{m+1}}, \quad (2)$$

Fully-Connected Layer I

- Assume L^C is the number of convolutional layers
- Input vector of the first fully-connected layer:

$$z^{m,i} = \text{vec}(Z^{m,i}), i = 1, ..., I, m = L^c + 1.$$

• In each of the fully-connected layers $(L^c < m \le L)$, we consider weight matrix and bias vector between layers m and m+1.

Fully-Connected Layer II

• Weight matrix:

$$W^{m} = \begin{bmatrix} w_{11}^{m} & w_{12}^{m} & \cdots & w_{1n_{m}}^{m} \\ w_{21}^{m} & w_{22}^{m} & \cdots & w_{2n_{m}}^{m} \\ \vdots & \vdots & \vdots & \vdots \\ w_{n_{m+1}1}^{m} & w_{n_{m+1}2}^{m} & \cdots & w_{n_{m+1}n_{m}}^{m} \end{bmatrix}_{n_{m+1} \times n_{m}}$$
(3)

Bias vector

$$oldsymbol{b}^m = egin{bmatrix} b_1^m \ b_2^m \ dots \ b_n^m \ \end{bmatrix}$$

Fully-Connected Layer III

Here n_m and n_{m+1} are the numbers of nodes in layers m and m+1, respectively.

• If $z^{m,i} \in R^{n_m}$ is the input vector, the following operations are applied to generate the output vector $z^{m+1,i} \in R^{n_{m+1}}$.

$$\boldsymbol{s}^{m,i} = \boldsymbol{W}^m \boldsymbol{z}^{m,i} + \boldsymbol{b}^m, \tag{4}$$

$$z_j^{m+1,i} = \sigma(s_j^{m,i}), \ j = 1, \dots, n_{m+1}.$$
 (5)

Challenges in NN Optimization

- The objective function is non-convex. It may have many local minima
- It's known that global optimization is much more difficult than local minimization
- The problem structure is very complicated