
From CPU to GPU I

We have discussed that improving the memory
access greatly reduce the running time of
matrix-matrix multiplications.

The question now is why CPU is not efficient
enough and people often use GPU.

The short answer is that GPU can do better parallel
computation than CPU on matrix-matrix
multiplications.

That is, CPU and GPU have different designs.

However, we also notice that their designs are
evolving.

August 2, 2025 1 / 34

From CPU to GPU II

Some time ago, an influential paper (Fatahalian
et al., 2004) showed that GPU for matrix-matrix
multiplications was not faster than an optimized
implementation on CPU.

Apparently, the GPU architecture has improved a lot
since then.

Therefore, in the slides we aim to give a high-level
overview instead of getting into details that may
change over time.

August 2, 2025 2 / 34

CPU Versus GPU I

CPU is designed to handle different types of tasks.

Thus, in every personal computer you need a CPU.

In contrast, GPU is more specialized.

From the name, Graphical Processing Unit, we see
that it was initially designed for graphics rendering.

It happens that GPU is very efficient for matrix
operations in deep learning.

Specifically, it can run the same operation in a
massively parallel way.

August 2, 2025 3 / 34

CPU Versus GPU II

For example, if we would like to do a vector
addition:

ci = ai + bi,∀i,

We have the same “+” operation on multiple data
(i.e., ai, bi,∀i).
The following figure from Nvidia’s CUDA C++
programming guide1 illustrates the architectural
difference between CPU and GPU.

August 2, 2025 4 / 34

CPU Versus GPU III

August 2, 2025 5 / 34

CPU Versus GPU IV

In the figure we see those GPU cores are in the
green color, and the shared memory for the cores in
each row is in the purple color.

Clearly, each GPU has a lot more cores than CPU.

From the guide, “Driven by the insatiable market
demand for realtime, high-definition 3D graphics,
GPU has evolved into a highly parallel,
multithreaded, manycore processor with tremendous
computational horsepower and very high memory
bandwidth.”

August 2, 2025 6 / 34

CPU Versus GPU V

To utilize the so many cores, it is convenient if we
split them to several groups.

We do this in both software level and hardware
implementation.

The separation is important as the hardware
implementation may rapidly evolve.

Thus, we have some kind of abstraction, so users
only need to focus on the software part.

We call the software solution a GPU programming
model.

1https:

//docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
August 2, 2025 7 / 34

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

GPU Programming Model I

We follow the termology in CUDA programming
guide though concepts in other GPU programming
models are similar.

In CUDA, we achieve parallelism by running many
threads. Each thread is executed on a GPU core.

A typical CPU/GPU core has multiple threads. For
example, x86 CPU processors have two threads per
core.

August 2, 2025 8 / 34

GPU Programming Model II

A thread and a core are the most basic unit on the
software and hardware sides, respectively. For
simplicity, let us assume that they correspond to
each other.

To handle many cores, CUDA considers a hierarchy
of thread groups.

That is, in a higher level, we have coarse-grained
data parallelism and task parallelism.

In the lower level, we have fine-grained data
parallelism and thread parallelism.

Specifically,

August 2, 2025 9 / 34

GPU Programming Model III

a grid contains blocks
↓

a block contains threads

In CUDA, a kernel is a function to be executed in
parallel.

It may involve several threads, or several blocks of
threads (i.e., a grid).

Let us consider two examples in CUDA
programming guide.

In the first example, a kernel invokes N threads and
each thread does one pair-wise addition.

August 2, 2025 10 / 34

GPU Programming Model IV

__global__ void VecAdd(float* A, float* B,

float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

...

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

August 2, 2025 11 / 34

GPU Programming Model V

...

}

global indicates that this is a kernel function
that can be called from the host side (i.e., main()
on CPU) by using <<<...>>>.

<<<1, N>>> specifies the grid and block sizes.
More examples will be given later.

Here we have a grid with one block, and each block
has N threads.

August 2, 2025 12 / 34

GPU Programming Model VI

A block can be a one-dimensional, two-dimensional,
or three-dimensional block of threads. In our
example, the block is one-dimensional.

Such a design is natural. We see that a
two-dimensional block of threads can easily handle
matrix operations.

We can further use a grid of equally-shaped thread
blocks to run a kernel.

Similarly, a grid may contain one-dimensional,
two-dimensional, or three-dimensional blocks.

August 2, 2025 13 / 34

GPU Programming Model VII

The next example shows the use of a grid of blocks
for matrix addition.

__global__ void MatAdd(float A[N][N],

float B[N][N], float C[N][N])

{

int i = blockIdx.x * blockDim.x +

threadIdx.x;

int j = blockIdx.y * blockDim.y +

threadIdx.y;

if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];

August 2, 2025 14 / 34

GPU Programming Model VIII

}

int main()

{

...

int block_size = 16;

dim3 dim_block(block_size, block_size);

dim3 dim_grid(N/block_size,

N/block_size);

MatAdd<<<dim_grid, dim_block>>>(A,

B, C);

August 2, 2025 15 / 34

GPU Programming Model IX

...

}

CUDA has a special data type dim3 to specify the
dimensionality of a block and a grid.

Here each our block has

16× 16 = 256

threads.

August 2, 2025 16 / 34

GPU Programming Model X

Then we need a two-dimensional setting of

N

16
× N

16
blocks,

where our matrices are N ×N .

For simplicity, we assume that N is divisible by 16.

Note that we do not specify the third dimension of
dim3. Or we can say that the third dimension is 1.

To access the row index, we see the following line

int i = blockIdx.x * blockDim.x +

threadIdx.x;

August 2, 2025 17 / 34

GPU Programming Model XI

It takes block ID and block size into account.

The following figure shows the coordinate (x, y) of
blocks in a 2× 3 grid and threads in a 3× 3 block.
Note that x is horizontal and y is vertical.

For example, if we have blockIdx.x = 1,
threadIdx.x = 2, blockIdx.y = 1 and
threadIdx.y = 0, we perform MatAdd on

C[5][3]=A[5][3]+B[5][3]

using the Thread (2, 0) in the Block (1, 1) in the
Grid, which is the green thread in the following
figure.

August 2, 2025 18 / 34

GPU Programming Model XII
Grid

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(2, 0)

(2, 1)

Block (1, 1)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

August 2, 2025 19 / 34

Matrix-matrix Multiplications I

An optimized implementation must

parallelize the operations, and
reduce the number of memory accesses.

It is complicated to achieve both.

As in earlier slides we have demonstrated the
importance of memory accesses, here we focus on
the massive parallelization of GPU.

We borrow many materials from the blog “2678x
Faster Matrix Multiplication with a GPU” and its
code repository.2

August 2, 2025 20 / 34

Matrix-matrix Multiplications II

We calculate
C = A×B

by

Cij =
N∑
k=1

AikBkj.

We let each thread handle one Cij calculation.

The kernel function is as follows.

August 2, 2025 21 / 34

Matrix-matrix Multiplications III

__global__ void matmul_kernel(float* A,

float* B, float* C, int N)

{

int i = blockDim.y*blockIdx.y +

threadIdx.y;

int j = blockDim.x*blockIdx.x +

threadIdx.x;

if (i < N && j < N)

{

float value = 0;

August 2, 2025 22 / 34

Matrix-matrix Multiplications IV

for (int k = 0; k < N; k++)

{

value += A[i*N+k] * B[k*N+j];

}

C[i*N+j] = value;

}

}

We have the following function to call the kernel
function.

August 2, 2025 23 / 34

Matrix-matrix Multiplications V

void matmul_gpu(float* A, float* B,

float* C, int N)

{

float* d_A; float* d_B; float* d_C;

cudaMalloc((void**) &d_A,

N*N*sizeof(float));

cudaMalloc((void**) &d_B,

N*N*sizeof(float));

cudaMalloc((void**) &d_C,

N*N*sizeof(float));

August 2, 2025 24 / 34

Matrix-matrix Multiplications VI

cudaMemcpy(d_A, A, N*N*sizeof(float),

cudaMemcpyHostToDevice);

cudaMemcpy(d_B, B, N*N*sizeof(float),

cudaMemcpyHostToDevice);

int block_size = 32;

dim3 dim_block(block_size, block_size);

dim3 dim_grid(N/block_size,

N/block_size);

matmul_kernel<<<dim_grid, dim_block>>>

August 2, 2025 25 / 34

Matrix-matrix Multiplications VII

(d_A, d_B, d_C, N);

cudaMemcpy(C, d_C, N*N*sizeof(float),

cudaMemcpyDeviceToHost);

cudaFree(d_A); cudaFree(d_B);

cudaFree(d_C);

}

The input includes three matrices A, B, C in CPU.

Thus, we allocate three matrices in GPU by
cudaMalloc.

August 2, 2025 26 / 34

Matrix-matrix Multiplications VIII

We then copy matrices from CPU to GPU by
cudaMemcpy.

Finally, the main program is as follows.

#include <stdio.h>

#include <sys/time.h>

int main(int argc, char const *argv[])

{

int N = 32768;

struct timeval t1, t2;

August 2, 2025 27 / 34

Matrix-matrix Multiplications IX

double elapsedTime;

float* A = (float*)malloc(

N*N*sizeof(float));

float* B = (float*)malloc(

N*N*sizeof(float));

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

{

A[i*N+j] = (float)(rand()%10);

B[i*N+j] = (float)(rand()%10);

August 2, 2025 28 / 34

Matrix-matrix Multiplications X

}

float* C = (float*)malloc(

N*N*sizeof(float));

gettimeofday(&t1, NULL);

matmul_gpu(A, B, C, N);

gettimeofday(&t2, NULL);

elapsedTime = (t2.tv_sec - t1.tv_sec) +

(t2.tv_usec - t1.tv_usec) / 1000000.0;

printf("GPU time (N: %d): %f sec\n",

N, elapsedTime);

August 2, 2025 29 / 34

Matrix-matrix Multiplications XI

free(A); free(B); free(C);

return 0;

}

In the code, we randomly generate values of A and
B.

Once you include all the above programs (main and
subroutines) to a fine, we can build an executable
file by

$ nvcc matmul.cu -o matmul

August 2, 2025 30 / 34

Matrix-matrix Multiplications XII

We consider a machine with NVIDIA GeForce RTX
3090.

Running the GPU code gives

GPU time (N: 32768): 33.333848 sec

On a high-end CPU (AMD Ryzen 9 7950X 16-Core
Processor), using Octave gives

> A = B = randn(32768,32768);

> tic; C = A*B; toc

Elapsed time is 74.1317 seconds.

Note that Octave calls highly sophisticated
optimized BLAS.

August 2, 2025 31 / 34

Matrix-matrix Multiplications XIII

But on GPU, by a very simple implementation, the
running time is already shorter.

If we run optimized BLAS for GPU (e.g., cuBLAS on
Nvidia GPUs), the running time should be even less.

Note that our GPU code achieves reasonably good
memory efficiency.

For each block, we access 32 rows and 32 columns
of A and B, respectively, to calculate a 32× 32
sub-matrix in C.

If we reduce the size of each block,

August 2, 2025 32 / 34

Matrix-matrix Multiplications XIV

int block_size = 4;

dim3 dim_block(block_size, block_size);

dim3 dim_grid(N/block_size,

N/block_size);

we see the running time increases:

GPU time (N: 32768): 112.512197 sec

The reason is due to worse memory efficiency.

2https://0mean1sigma.com/

2678x-faster-how-gpus-supercharge-matrix-multiplication/
August 2, 2025 33 / 34

https://0mean1sigma.com/2678x-faster-how-gpus-supercharge-matrix-multiplication/
https://0mean1sigma.com/2678x-faster-how-gpus-supercharge-matrix-multiplication/

References I

K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency of gpu algorithms
for matrix-matrix multiplication. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pages 133–137, 2004.

August 2, 2025 34 / 34

	References

