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Inefficiency of Attention Operation I

Similar to the memory-access issue discussed before
for matrix-matrix products, a possible bottleneck of
attention is on moving data (i.e., matrices) between
lower-level and upper-level memory.

To analyze this issue, we must check the number of
memory accesses.
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Attention Operations I

For the discussion, first we recall details of attention.
For simplicity, we consider the single-head attention.

If the input matrix is

Z̃ ∈ RT×d,

the attention operation is

SoftMax(
Z̃WQW

⊤
K (Z̃)

⊤
√
d

)Z̃WV . (1)
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Attention Operations II

We consider three trainable weight matrices

WQ ∈ Rd×d,WK ∈ Rd×d,WV ∈ Rd×d

to convert the input matrix Z̃ to

Z̃WQ ∈ RT×d, Z̃WK ∈ RT×d, Z̃WV ∈ RT×d.
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Attention Operations III

In (1), the SoftMax function is applied on each row
z of an input matrix in the following way.

SoftMax(z) =


exp(z1)∑
j exp(zj)
...

exp(zT )∑
j exp(zj)

 . (2)

Chih-Jen Lin (National Taiwan Univ.) 6 / 58



Attention Operations IV

FlashAttention (Dao et al., 2022) defines that

Q := Z̃WQ, K := Z̃WK , V := Z̃WV ,

and assumes that Q,K,V had been already
precomputed.

Omitting 1/
√
d for simplification, FlashAttention

turns (1) into

O := SoftMax(QK⊤)V, (3)

where O ∈ RT×d is the output matrix of the
attention.
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Memory Accesses in Attention I

We still assume that our machine has only two
layers of memory:

main memory, and
secondary memory.

If an operand is not available in main memory, we
must transport it from secondary memory.

Now consider (3) and check intermediate values
during computation.
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Memory Accesses in Attention II

We need

QK⊤ ∈ RN×N , (4)

SoftMax(QK⊤) ∈ RN×N , (5)

SoftMax(QK⊤)V ∈ RN×d. (6)

As
N ≫ d

in general, even though the output

SoftMax(QK⊤)V ∈ RN×d,
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Memory Accesses in Attention III

we can see that storing N ×N matrices is the main
difficulty.

Our first analysis is to assume that

N ×N

matrices cannot be stored in the main memory, and
check the need to move these matrices

If we consider (4)-(6) as independent operations,
immediately we see the following major memory
accesses:

Chih-Jen Lin (National Taiwan Univ.) 10 / 58



Memory Accesses in Attention IV

write
QK⊤ ∈ RN×N (7)

to secondary memory,
load the matrix (7) from secondary memory to
calculate

SoftMax(QK⊤) (8)

and write results back to secondary memory,
and
load the matrix in (8) for calculating

SoftMax(QK⊤)V ∈ RN×d.
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Memory Accesses in Attention V

We assume that even though storing an N ×N
matrix in main memory is not possible, the
computer has a way to sequentially work on part of
the data and gradually generate the whole results.

It is just like that we do matrix-matrix products all
the time, but never worry that our highest-level
memory (i.e., registers) is insufficient to store
operands.
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Memory Accesses in Attention VI

Now we conclude that a naive implementation of
attention leads to

4×N 2

accesses between main and secondary memory.
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Memory Versus Computation I

We see attention involves the following operations
and list their respective cost.

QK⊤ : 2N 2d,

SoftMax(QK⊤) : 3N 2,

SoftMax(QK⊤)V : 2N 2d.
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Memory Versus Computation II

Clearly, if

4N 2d× cost per operation

<

4N 2 × cost per memory access,

then attention is memory bounded.

Example:

Therefore, we must reduce the number of memory
accesses.
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Reducing Memory Accesses I

One possible strategy to reduce the number of
memory accesses is to avoid loading and storing
intermediate results.

That is, we should generate the attention results
“part by part.” All we need is to sequentially store
the finished part back to the secondary memory.

If the main memory is sufficiently to store

N × d matrices such as Q,K, and V,

we can conduct the following procedure:
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Reducing Memory Accesses II

Load Q,K, and V to main memory.
For i = 1, . . . , N , calculate

Qi,:K
⊤ ∈ R1×N ,

SoftMax(Qi,:K
⊤) ∈ R1×N ,

SoftMax(Qi,:K
⊤)V ∈ R1×d

and store the ith row of the output matrix to
the secondary memory.
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Reducing Memory Accesses III

By this way, the number of memory accesses is
reduced to

O(Nd).

because we never load/store any N ×N matrices.

Unfortunately, our assumption of that N × d
matrices can be stored in main memory is often
untrue

In this situation, we must load K and V multiple
times even for calculating one output row.
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Reducing Memory Accesses IV

A possible strategy is to calculate |I| rows together:

SoftMax(QI,:K
⊤)V,

where I is the block of rows that we intend to
calculate.

In this calculation, we must load

|I| rows of Q, and the whole K and V .
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Reducing Memory Accesses V

We also need to store intermediate block of

QI,:K
⊤, (9)

which requires
|I| × n

space.

The largest possible |I| is

M

n
,

where M is the size of the main memory.
Chih-Jen Lin (National Taiwan Univ.) 20 / 58



Reducing Memory Accesses VI

Thus the total number of memory accesses is

O(
N

M/n
)×O(Nd) = O(

N 3d

M
). (10)

In the above discussion, we see that the main
bottleneck is to store the intermediate matrix in (9).

Because the number of rows in (9) is a large
number N , |I| must be small. Thus we get a large
first term in the calculation of (10).
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FlashAttention I

To reduce the number of memory accesses, let us
see if we may avoid storing the intermediate matrix
in (9).

Assume that we split Q to the following row-block
form: QI1,:

...
QIN̄ ,:


with

|I1| = · · · = |IN̄ |.
We do the same split for K,V .
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FlashAttention II

Consider I to be any one of |I1|, . . . , |IN̄ |. We have

SoftMax(QI,:

[
K⊤

I1,:
· · · K⊤

IN̄ ,:

]
)

VI1,:
...

VIN̄ ,:


=SoftMax(

[
QI,:K

⊤
I1,:

· · · QI,:K
⊤
IN̄ ,:

]
)

VI1,:
...

VIN̄ ,:


If there is no SoftMax, we can see the result is

(QI,:K
⊤
I1,:

)VI1,: + · · ·+ (QI,:K
⊤
IN̄ ,:)VIN̄ ,:.
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FlashAttention III

We have

(QI,:K
⊤
I1,:

)VI1,: ∈ |I|×d, . . . , (QI,:K
⊤
IN̄ ,:)VIN̄ ,: ∈ |I|×d.

If we sequentially generate each term, there is no
need to store the intermediate sub-matrix in (9).

In this situation, because all we need is a few |I| × d
blocks, we have

|I| = O(
M

d
).
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FlashAttention IV

Therefore, the number of memory accesses is

O(
N

m/d
)×O(Nd) = O(

N 2d2

M
).

Unfortunately, we need the whole intermediate
matrix in (9) because the SoftMax function involves
all elements in each row.
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FlashAttention V

A crucial observation is that if we can have

SoftMax(
[
QI,:K

⊤
I1,:

· · · QI,:K
⊤
Is+1,:

]
)

 VI1,:
...

VIs+1,:


=∆s ⊙

SoftMax(
[
QI,:K

⊤
I1,:

· · · QI,:K
⊤
Is,:

]
)

VI1,:
...

VIs,:


+∆s+1 ⊙

(
SoftMax(QI,:K

⊤
Is+1,:

)VIs+1,:

)
,
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FlashAttention VI

where ⊙ is the component-wise product, and
∆s,∆s+1 ∈ Rd are available, then we can manage
to get the result

We have ∀i ∈ I1 ∪ · · · ∪ Is,

exp (zi)∑
j∈I1∪···∪Is+1

exp (zj)

=

( ∑
j∈I1∪···∪Is exp (zj)∑

j∈I1∪···∪Is+1
exp (zj)

)
︸ ︷︷ ︸

∆1

exp (zi)∑
j∈I1∪···∪Is exp (zj)

,
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FlashAttention VII

and ∀i ∈ Is+1,

exp (zi)∑
j∈I1∪···∪Is+1

exp (zj)

=

( ∑
j∈Is+1

exp (zj)∑
j∈I1∪···∪Is+1

exp (zj)

)
︸ ︷︷ ︸

∆2

exp (zi)∑
j∈Is+1

exp (zj)
.

Clearly, all we need is to maintain∑
j∈I1∪···∪Is

exp (zj). (11)
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FlashAttention VIII

When handling s+ 1, we get∑
j∈Is+1

exp (zj),

so we can update (11) by∑
j∈I1∪···∪Is+1

exp (zj)

=
∑

j∈I1∪···∪Is

exp (zj) +
∑
j∈Is+1

exp (zj).
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FlashAttention IX

The O(d) cost for storing (11) is affordable.

We may be more general instead of doing row
blocks
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Practical Implementation I

talk about the way to calculate and maintain
(11)
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Background

Memory Hierarchy in the GPU I

In these slides, we will introduce the work
“FlashAttention” (Dao et al., 2022), a method to
accelerate on-GPU computation in attention layers.

To understand FlashAttention, it is necessary to first
review the GPU memory hierarchy.

The GPU memory hierarchy is similar to the CPU’s
introduced in the video borrowed from the course
“Numerical Methods”.

Based on this similarity, we also assume that the
GPU has only two layers of memory
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Background

Memory Hierarchy in the GPU II

Cache: Small and fast, typically around 100
kilobytes (KB) and close to the processor
Main Memory:1 Large but slower, typically
around 10 gigabytes (GB)

With this hierarchy, GPUs also experience page
faults: an operand is not available in the cache and
must be transported from the main memory.

The transportations of operands also take time and
are typically measured by the number of memory
accesses.
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Background

Memory Hierarchy in the GPU III

When an operation on GPUs has a large number of
memory accesses and takes more runtimes on data
transportation than computation, it is memory
bounded; otherwise, it is computation bounded.

However, comparing runtimes usually requires
concrete hardware specifications, such as how many
floating-point operations per second (FLOPS) a
GPU can perform at a given precision.

For simplicity, we can instead compare complexities
to determine what bounds an operation.
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Background

Memory Hierarchy in the GPU IV

Since computation on GPUs is much faster than
memory access, when the computation complexity is
no greater than the memory-access complexity, the
operation is considered memory-bounded.

The work “FlashAttention” argues that attention is
memory bound and thus accelerates it by reducing
memory usage and access.

1Some documents also refer to the main memory as High Bandwidth
Memory (HBM) or simply DRAM, since HBM is a high-bandwidth type of
DRAM used as the main memory.
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Attention is Memory-Bounded

Memory-Insufficient Issue in Attention I

During the computation (3), there are intermediate
values, like

QK⊤ ∈ RT×T .

When T is large, such intermediate values are
impossible to be stored in the cache.

Take GPT-2 for example, T = 1024, leading to a
memory usage of

10242 × 32 bits = 4 megabytes (MB),

when each float number is stored in the
single-precision floating-point format.
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Attention is Memory-Bounded

Memory-Insufficient Issue in Attention II

This memory usage is much larger than the sizes of
most caches, like the 192 kilobytes (KB) of the
A100 GPU.

This memory-insufficient issue cause page faults in
the GPU, leading to writes and reads of intermediate
results (e.g., QK⊤) to and from the main memory.
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Attention is Memory-Bounded

Standard Attention Implementation I

Given the memory-insufficient issue, the standard
attention implementation is divided into four steps.
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Attention is Memory-Bounded

Standard Attention Implementation II

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V ∈ RT×d in the main memory.
1: LoadQ,K by blocks from the main memory, compute

S = QK⊤ ∈ RT×T , write S to the main memory.
2: Read S from the main memory, compute P =

SoftMax(S) ∈ RT×T , write P to the main memory.
3: Load P andV by blocks from the main memory, com-

pute O = PV, write O to the main memory.
4: Return O.
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Attention is Memory-Bounded

Standard Attention Implementation III

Since the T × T intermediate matrix, S, can not fit
in the cache, Step 1 have to calculate S by blocks in
the cache and then reconstruct it in the main
memory.

Then, Step 2 is forced to read S from the main
memory to apply SoftMax.

The above process results in a large number of
memory accesses, and the same thing also
repeatedly occurs with P.

Specifically, the complexities of memory access to
the main memory at each step are
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Attention is Memory-Bounded

Standard Attention Implementation IV

Step Read Write

1 Θ(Td) for Q,K Θ(T 2) for S
2 Θ(T 2) for S Θ(T 2) for P
3 Θ(T 2 + Td) for P,V Θ(Td) for O
4 – –

Total Θ(T 2 + Td) Θ(T 2 + Td)

Both the total memory access and usage
complexities are Θ(T 2 + Td).

As T ≫ d in general, the quadratic term T 2

dominates the complexity.
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Attention is Memory-Bounded

Standard Attention Implementation V

When T is large, the Θ(T 2 + Td) memory accesses
can account for a large portion of the runtime of
attention, while the memory usage can be
prohibitive as well.
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Attention is Memory-Bounded

Attention is Memory-Bounded I

We next examine whether attention is
memory-bound, as argued in FlashAttention.

Here is a comparison between the complexities of
memory access and computation at each step.

Step Computation reads + writes

1 Θ(T 2d) for QK⊤ Θ(T 2 + Td)
2 Θ(T 2) for SoftMax(S) Θ(T 2)
3 Θ(T 2d) for PV Θ(T 2 + Td)
4 – –
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Attention is Memory-Bounded

Attention is Memory-Bounded II

In Step 2, the computation and memory access
complexities are on the same scale.

It indicates that this step is memory bounded on
GPUs where computation is much faster than
memory access.

This observation aligns with the argument in the
work of “FlashAttention”, and show that the Θ(T 2)
complexity arises from the two T × T intermediate
matrices, S and P.
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Attention is Memory-Bounded

Attention is Memory-Bounded III

Therefore, if there is a way to avoid explicitly
outputting S and P, a large number of accesses to
the main memory can be saved, thereby alleviating
the memory bound.

This avoidance requires restricting all computations
in attention to portions of S and P that fit in the
cache, rather than the entire matrices.
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FlashAttention

Decompose SoftMax I

FlashAttention succeeds to keep all computations
on the cache by decomposing SoftMax wisely.

To illustrate the details, let us review the common
way to compute SoftMax first.

For numerical stability, the SoftMax of a row vector
z ∈ R1×T is computed as

m(z) := max
j∈{1,··· ,T}

zj, f(z) := [ez1−m(z) · · · ezT−m(z)],

ℓ(z) :=
∑T

j=1
f(z)j, SoftMax(z) :=

f(z)

ℓ(z)
.

Chih-Jen Lin (National Taiwan Univ.) 49 / 58



FlashAttention

Decompose SoftMax II

Consider T is even, and divide z into two blocks
z(1), z(2) ∈ R1×B, where 2B = T .

Then, we have

m(z) = m([z(1) z(2)]) = max
(
m(z(1)),m(z(2))

)
,

f(z) =
[
em(z(1))−m(z)f(z(1)) em(z(2))−m(z)f(z(2))

]
,

ℓ(z) = ℓ([z(1) z(2)])

= em(z(1))−m(z)ℓ(z(1)) + em(z(2))−m(z)ℓ(z(2)).
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FlashAttention

Decompose SoftMax III

Therefore,

SoftMax(z) =
f(z)

ℓ(z)
,

=

[
em(z(1))−m(z)f(z(1)) em(z(2))−m(z)f(z(2))

]
em(z(1))−m(z)ℓ(z(1)) + em(z(2))−m(z)ℓ(z(2))

.

(12)

As shown above, the computations of SoftMax can
naturally split into two parts (marked in blue and
red), each of which corresponding to one block, z(1)

or z(2).
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FlashAttention

Decompose Attention I

With (12), we can decompose all the computations
in attention into blocks now.

For illustration, consider that Q,K, and V can be
decomposed into two blocks, like

Q =

[
Q(1)

Q(2)

]
,K =

[
K(1)

K(2)

]
,V =

[
V(1)

V(2)

]
,

where each block is of shape (B, d), like
Q(1) ∈ RB×d.
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FlashAttention

Decompose Attention II

Then,

S = QK⊤ =

[
Q(1)(K(1))⊤ Q(1)(K(2))⊤

Q(2)(K(1))⊤ Q(2)(K(2))⊤

]
,

=

[
S(11) S(12)

S(21) S(22)

]
. (13)
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FlashAttention

Decompose Attention III

Since SoftMax is applied on each row of S
independently,

P = SoftMax(S),

= SoftMax

([
S(11) S(12)

S(21) S(22)

])
,

=

[
SoftMax

(
[S(11) S(12)]

)
SoftMax

(
[S(21) S(22)]

)] .
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FlashAttention

Decompose Attention IV

Therefore,

PV =

[
SoftMax

(
[S(11) S(12)]

)
SoftMax

(
[S(21) S(22)]

)] [V(1)

V(2)

]
,

=

SoftMax
(
[S(11) S(12)]

) [V(1)

V(2)

]
SoftMax

(
[S(21) S(22)]

) [V(1)

V(2)

]
 . (14)
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FlashAttention

Decompose Attention V

With 12, the first row of (14) becomes[
em(z(1))−m(z)f(z(1)) em(z(2))−m(z)f(z(2))

] [
V(1)

V(2)

]
em(z(1))−m(z)ℓ(z(1)) + em(z(2))−m(z)ℓ(z(2))

,

=
em(z(1))−m(z)f(z(1))V(1) + em(z(2))−m(z)f(z(2))V(2)

em(z(1))−m(z)ℓ(z(1)) + em(z(2))−m(z)ℓ(z(2))
,

(15)

where we take z(1) := S(11), and z(2) := S(12).
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FlashAttention

Decompose Attention VI

Note that the blue and red parts of (15) are still not
entirely confined within their corresponding block
due to m(z), which is the global maximum of z.

To deal with m(z), FlashAttention iterate over
blocks to calculate (15) while caching two variables
at very low cost.2

Specifically,

2It may seem that we can simply multiply both the numerator and
denominator by em(z) to remove m(z) and make the blue and red parts
independent. However, m(z) is essential for ensuring numerical stability and
therefore cannot be removed by this way.
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FlashAttention
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