
Adam (Adaptive Moments) I

The update rule (Kingma and Ba, 2015)

g ← θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)

s ← ρ1s + (1− ρ1)g

r ← ρ2r + (1− ρ2)g ⊙ g

ŝ ← s

1− ρt1

r̂ ← r

1− ρt2

θ ← θ − ϵ√
r̂ + δ

⊙ ŝ
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Adam (Adaptive Moments) II

t is the current iteration index

Roughly speaking, Adam is the combination of

Momentum
RMSprop

From Goodfellow et al. (2016),

ϵ√
r̂ + δ

⊙ ŝ

(i.e., the use of momentum combined with
rescaling) “does not have a clear theoretical
motivation”
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Adam (Adaptive Moments) III

How about Adam’s practical performance?

From Goodfellow et al. (2016), “generally regarded
as being fairly robust to the choice of
hyperparmeters, though the learning rate may need
to be changed from the default”

However, from the web page we referred to for
deriving the bias correction, “The original paper ...
showing huge performance gains in terms of speed
of training. However, after a while people started
noticing, that in some cases Adam actually finds
worse solution than stochastic gradient”
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Adam (Adaptive Moments) IV

One example of showing the above is Wilson et al.
(2017)
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Bias Correction in Adam I

The two steps in Adam

ŝ ← s

1− ρt1

r̂ ← r

1− ρt2

are called “bias correction”

Why do we need this “bias correction”?

Note that s is the direction used to update θ.
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Bias Correction in Adam II

We hope that its expectation is similar to the
expected gradient

E [s t] = E [g t ]

and
E [r t] = E [g t ⊙ g t ],

where t is the iteration index

The problem is that due to the moving average, the
vector is biased toward the initial value

Note that our initial s is 0
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Bias Correction in Adam III

For s t , we have

s t = ρ1s t−1 + (1− ρ1)g t

= ρ1(ρ1s t−2 + (1− ρ1)g t−1) + (1− ρ1)g t

= (1− ρ1)
t∑

i=1

ρt−i1 g i
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Bias Correction in Adam IV

Then

E [s t ] = E [(1− ρ1)
t∑

i=1

ρt−i1 g i ]

= E [g t](1− ρ1)
t∑

i=1

ρt−i1

Note that we assume

E [g i ],∀i ≥ 1

are the same
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Bias Correction in Adam V

Next,

(1− ρ1)
t∑

i=1

ρt−i1

=(1− ρ1)(1 + · · ·+ ρt−11 )

=1− ρt1

Thus
E [s t] = E [g t ](1− ρt1)

and they do

ŝ ← s

1− ρt1
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Bias Correction in Adam VI

The above derivation on bias correction partially
follows from https://towardsdatascience.com/

adam-latest-trends-in-deep-learning-optimization-6be9a291375c

The situation for E [g t ⊙ g t] is similar
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The Importance of Bias Correction I

An interesting story is that BERT (Devlin et al.,
2019), an important NLP technique using Adam,
forgot to do bias correction

This seems to cause lengthy iterations

See Zhang et al. (2021) for discussing this issue
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Weight Decay I

Recall in our earlier description, the simple
stochastic gradient update is

θ ← θ − η(
θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

In this rule,
θ

C

comes from the regularization term θTθ/(2C ) in
f (θ)
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Weight Decay II

The use of regularization follows from standard
machine learning settings

However, in the area of neural networks, this term
may come from a setting called weight decay
(Hanson and Pratt, 1988)

θ ← (1− λ)θ − η(
1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

where λ is the rate of weight decay

In fact, Hanson and Pratt (1988) did not give good
reasons for decaying the weight of θ
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Weight Decay III

Clearly, if

λ =
η

C

then weight decay is the same as regularization

However, as pointed out in Loshchilov and Hutter
(2019), the equivalence does not hold if adaptive
learning rate is used
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Weight Decay IV

For example, in AdaGrad, the update rule is

θ ← θ − ϵ√
r + δ

⊙ (
1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

− ϵ√
r + δ

⊙ θ

C

so the regularization term is scaled in a
component-wise way

Loshchilov and Hutter (2019) advocate to decouple
the weight decay step
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Weight Decay V

For example, for the momentum algorithm

v ← αv − η(
θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

θ ← θ + v

they prefer the following equivalent form

v ← αv − η(
1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

θ ← θ + v − η
θ

C
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Weight Decay VI

Based on this, Loshchilov and Hutter (2019)
proposed AdamW
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AdamW I

g ← 1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)

s ← ρ1s + (1− ρ1)g

r ← ρ2r + (1− ρ2)g ⊙ g

ŝ ← s

1− ρt1

r̂ ← r

1− ρt2

θ ← θ − ϵ√
r̂ + δ

⊙ ŝ − ϵ
θ

C
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AdamW II

This is not equivalent to Adam because in Adam,
θ/C has been used in calculating g and then scaled
after

Why is the decoupled setting better? Some
discussions are in Section 3 of Loshchilov and
Hutter (2019)
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Choosing Stochastic Gradient Algorithms

From Goodfellow et al. (2016), “there is currently
no consensus”

Further, “the choice ... seemed to depend on the
user’s familiarity with the algorithm”
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Why Stochastic Gradient Widely Used? I

In machine learning fast final convergence may not
be important

An optimal solution θ∗ may not lead to the
best model
Further, we don’t need a point close to θ∗. In
prediction we find

argmax
k

zL+1
k (θ)

A not-so-accurate θ may be good enough

An illustration (modified from Tsai et al. (2014))
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Why Stochastic Gradient Widely Used? II

time
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Slow final convergence Fast final convergence
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Why Stochastic Gradient Widely Used? III

The special property of data classification is
essential

E (∇θξ(θ; y
i ,Z 1,i)) =

1

l
∇θ

l∑
i=1

ξ(θ; y i ,Z 1,i)

We can cheaply get a good approximation of the
gradient

Indeed stochastic gradient is less used outside
machine learning
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Why Stochastic Gradient Widely Used? IV

Easy implementation. It’s simpler than methods
using, for example, second derivative

Now for complicated networks, (subsampled)
gradient is calculated by automatic differentiation

We will explain more about this

Non-convexity plays a role

For convex, other methods may possess
advantages to more efficiently find the global
minimum
But for non-convex, efficiency to reach a
stationary point is less useful
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Why Stochastic Gradient Widely Used? V

A global minimum usually gives a good model
(as loss is minimized), but for a stationary
point we are less sure

Some variants of SG have been proposed to improve
the robustness or the convergence

All these explain why SG is popular for deep learning
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