
Stochastic Gradient Methods for
Neural Networks

Chih-Jen Lin
National Taiwan University

Last updated: January 22, 2023

Chih-Jen Lin (National Taiwan Univ.) 1 / 18

Estimation of the Gradient I

Recall the function is

f (θ) =
1

2C
θTθ +

1

l

∑l

i=1
ξ(θ; y i ,Z 1,i)

The gradient is

θ

C
+

1

l
∇θ

l∑
i=1

ξ(θ; y i ,Z 1,i)

=
θ

C
+

1

l

l∑
i=1

∇θξ(θ; y
i ,Z 1,i)

Chih-Jen Lin (National Taiwan Univ.) 2 / 18

Estimation of the Gradient II

Going over all data is time consuming

If data are from the same distribution

E (∇θξ(θ; y ,Z
1)) =

1

l

l∑
i=1

∇θξ(θ; y
i ,Z 1,i)

then we may just use a subset S (often called a
batch)

θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)

Chih-Jen Lin (National Taiwan Univ.) 3 / 18

Stochastic Gradient Algorithm I

1: Given an initial learning rate η.
2: while do
3: Choose S ⊂ {1, . . . , l}.
4: Calculate

θ ← θ − η(
θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

5: May adjust the learning rate η
6: end while

It’s known that deciding a suitable learning rate is
difficult

Chih-Jen Lin (National Taiwan Univ.) 4 / 18

Stochastic Gradient Algorithm II

Too small learning rate: very slow convergence

Too large learning rate: the procedure may diverge

Chih-Jen Lin (National Taiwan Univ.) 5 / 18

Stochastic Gradient “Descent” I

In comparison with gradient descent you see that we
don’t do line search

Indeed we cannot. Without the full gradient, the
sufficient decrease condition may never hold.

f (θ + α∆θ) < f (θ) + ν∇f (θ)T (α∆θ)

Therefore, we don’t have a “descent” algorithm here

It’s possible that

f (θnext) > f (θ)

Though people frequently use “SGD,” it’s unclear if
“D” is suitable in the name of this method

Chih-Jen Lin (National Taiwan Univ.) 6 / 18

Momentum I

This is a method to improve the convergence speed
of the stochastic gradient method

A new vector v and a parameter α ∈ [0, 1) are
introduced

v ← αv − η(
θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)) (1)

θ ← θ + v

Chih-Jen Lin (National Taiwan Univ.) 7 / 18

Momentum II

Essentially what we do is

θ ← θ − η(current sub-gradient)

−αη(prev. sub-gradient)
−α2η(prev. prev. sub-gradient)− · · ·

Thus we are using an exponentially weighted
average of sub-gradients

Because at each iteration we select a subset of data
to get an approximate gradient, the resulting
directions may be noisy

Chih-Jen Lin (National Taiwan Univ.) 8 / 18

Momentum III

Conceptually, a moving average may make the
direction closer to the true one, so we get faster
convergence

However, the rule in (1) may be biased toward the
initial value

Thus we need bias correction

This will be discussed later

Chih-Jen Lin (National Taiwan Univ.) 9 / 18

AdaGrad I

Scaling learning rates inversely proportional to the
square root of sum of past gradient squares (Duchi
et al., 2011)

Update rule:

g ← θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)

r ← r + g ⊙ g

θ ← θ − ϵ√
r + δ

⊙ g

r : sum of past gradient squares
Chih-Jen Lin (National Taiwan Univ.) 10 / 18

AdaGrad II

ϵ and δ are given constants

⊙: Hadamard product (element-wise product of two
vectors/matrices)

A large g component

⇒ a larger r component

⇒ fast decrease of the learning rate

Conceptual explanation from Duchi et al. (2011):

frequently occurring features ⇒ low learning
rates
infrequent features ⇒ high learning rates

Chih-Jen Lin (National Taiwan Univ.) 11 / 18

AdaGrad III

“the intuition is that each time an infrequent
feature is seen, the learner should take notice.”

But how is this explanation related to g

components?

Let’s consider linear classification. Recall our
optimization problem is

w
T
w

2
+ C

l∑
i=1

ξ(w ; yi , x i)

Chih-Jen Lin (National Taiwan Univ.) 12 / 18

AdaGrad IV

For methods such as SVM or logistic regression, the
loss function can be written as a function of wT

x

ξ(w ; y , x) = ϵ̂(wT
x)

Then the gradient is

w + C
l∑

i=1

ϵ̂′(wT
x i)x i

Thus the gradient is related to the density of
features

Chih-Jen Lin (National Taiwan Univ.) 13 / 18

AdaGrad V

The above analysis is for linear classification

But now we have a non-convex neural network!

Empirically, people find that the sum of squared
gradient since the beginning causes too fast
decrease of the learning rate

Chih-Jen Lin (National Taiwan Univ.) 14 / 18

RMSProp I

The original reference seems to be the lecture slides
at https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf

Idea: they think AdaGrad’s learning rate may be too
small before reaching a locally convex region

That is, OK to sum all past gradient squares in
convex, but not non-convex

Thus they do “exponentially weighted moving
average”

Chih-Jen Lin (National Taiwan Univ.) 15 / 18

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

RMSProp II

Update rule

r ← ρr + (1− ρ)g ⊙ g

θ ← θ − ϵ√
δ + r

⊙ g

AdaGrad:

r ← r + g ⊙ g

θ ← θ − ϵ√
r + δ

⊙ g

Chih-Jen Lin (National Taiwan Univ.) 16 / 18

RMSProp III

Somehow the setting is a bit heuristic and the
reason behind the change (from AdaGrad to
RMSProp) is not really that strong

Chih-Jen Lin (National Taiwan Univ.) 17 / 18

References I

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Chih-Jen Lin (National Taiwan Univ.) 18 / 18

	References

