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Estimation of the Gradient I

Recall the function is

f (θ) =
1

2C
θTθ +
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l

∑l

i=1
ξ(θ; y i ,Z 1,i)

The gradient is
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Estimation of the Gradient II

Going over all data is time consuming

If data are from the same distribution

E (∇θξ(θ; y ,Z
1)) =

1

l

l∑
i=1

∇θξ(θ; y
i ,Z 1,i)

then we may just use a subset S (often called a
batch)

θ

C
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∑
i :i∈S

ξ(θ; y i ,Z 1,i)
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Stochastic Gradient Algorithm I

1: Given an initial learning rate η.
2: while do
3: Choose S ⊂ {1, . . . , l}.
4: Calculate

θ ← θ − η(
θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

5: May adjust the learning rate η
6: end while

It’s known that deciding a suitable learning rate is
difficult
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Stochastic Gradient Algorithm II

Too small learning rate: very slow convergence

Too large learning rate: the procedure may diverge
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Stochastic Gradient “Descent” I

In comparison with gradient descent you see that we
don’t do line search

Indeed we cannot. Without the full gradient, the
sufficient decrease condition may never hold.

f (θ + α∆θ) < f (θ) + ν∇f (θ)T (α∆θ)

Therefore, we don’t have a “descent” algorithm here

It’s possible that

f (θnext) > f (θ)

Though people frequently use “SGD,” it’s unclear if
“D” is suitable in the name of this method
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Momentum I

This is a method to improve the convergence speed
of the stochastic gradient method

A new vector v and a parameter α ∈ [0, 1) are
introduced

v ← αv − η(
θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)) (1)

θ ← θ + v
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Momentum II

Essentially what we do is

θ ← θ − η(current sub-gradient)

−αη(prev. sub-gradient)
−α2η(prev. prev. sub-gradient)− · · ·

Thus we are using an exponentially weighted
average of sub-gradients

Because at each iteration we select a subset of data
to get an approximate gradient, the resulting
directions may be noisy
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Momentum III

Conceptually, a moving average may make the
direction closer to the true one, so we get faster
convergence

However, the rule in (1) may be biased toward the
initial value

Thus we need bias correction

This will be discussed later
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AdaGrad I

Scaling learning rates inversely proportional to the
square root of sum of past gradient squares (Duchi
et al., 2011)

Update rule:

g ← θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)

r ← r + g ⊙ g

θ ← θ − ϵ√
r + δ

⊙ g

r : sum of past gradient squares
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AdaGrad II

ϵ and δ are given constants

⊙: Hadamard product (element-wise product of two
vectors/matrices)

A large g component

⇒ a larger r component

⇒ fast decrease of the learning rate

Conceptual explanation from Duchi et al. (2011):

frequently occurring features ⇒ low learning
rates
infrequent features ⇒ high learning rates
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AdaGrad III

“the intuition is that each time an infrequent
feature is seen, the learner should take notice.”

But how is this explanation related to g

components?

Let’s consider linear classification. Recall our
optimization problem is

w
T
w

2
+ C

l∑
i=1

ξ(w ; yi , x i)
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AdaGrad IV

For methods such as SVM or logistic regression, the
loss function can be written as a function of wT

x

ξ(w ; y , x) = ϵ̂(wT
x)

Then the gradient is

w + C
l∑

i=1

ϵ̂′(wT
x i)x i

Thus the gradient is related to the density of
features
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AdaGrad V

The above analysis is for linear classification

But now we have a non-convex neural network!

Empirically, people find that the sum of squared
gradient since the beginning causes too fast
decrease of the learning rate
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RMSProp I

The original reference seems to be the lecture slides
at https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf

Idea: they think AdaGrad’s learning rate may be too
small before reaching a locally convex region

That is, OK to sum all past gradient squares in
convex, but not non-convex

Thus they do “exponentially weighted moving
average”
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RMSProp II

Update rule

r ← ρr + (1− ρ)g ⊙ g

θ ← θ − ϵ√
δ + r

⊙ g

AdaGrad:

r ← r + g ⊙ g

θ ← θ − ϵ√
r + δ

⊙ g
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RMSProp III

Somehow the setting is a bit heuristic and the
reason behind the change (from AdaGrad to
RMSProp) is not really that strong
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