Stochastic Gradient Methods for
Neural Networks

Chih-Jen Lin

National Taiwan University

Last updated: January 22, 2023

Chih-Jen Lin (National Taiwan Univ.) 1/18

N
Estimation of the Gradient |

@ Recall the function is

f(0) = 5070+ 13 &6y, 2)

@ The gradient is

Chih-Jen Lin (National Taiwan Univ. 2/18

N
Estimation of the Gradient Il

@ Going over all data is time consuming

o If data are from the same distribution

]_ ! . .
E(Vos(0:y.2Y) =5 > Ve(8:y', Z)
i=1

then we may just use a subset S (often called a
batch)

0 1

c+ Ve d &6y 2"
C e 2 02

Chih-Jen Lin (National Taiwan Univ.) 3/18

-
Stochastic Gradient Algorithm |

1: Given an initial learning rate 7.
2. while do

3: Choose S C {1,...,/}.

4: Calculate

0«0 — 77 ‘S|VQZ£ 'y, Zl’
i:ieS

5: May adjust the learning rate 1
6: end while

@ It's known that deciding a suitable learning rate is
difficult

Chih-Jen Lin (National Taiwan Univ.) 4/18

-
Stochastic Gradient Algorithm |l

@ Too small learning rate: very slow convergence

@ Too large learning rate: the procedure may diverge

5/18

N
Stochastic Gradient “Descent” |

@ In comparison with gradient descent you see that we
don’t do line search

@ Indeed we cannot. Without the full gradient, the
sufficient decrease condition may never hold.

(8 + alf) < f(0) +vVFE(0) (aA)
@ Therefore, we don't have a “descent” algorithm here
@ It's possible that
£(0") > £(0)

@ Though people frequently use “SGD,” it's unclear if
“D" is suitable in the name of this method

Chih-Jen Lin (National Taiwan Univ.) 6/18

R
Momentum |

@ This is a method to improve the convergence speed
of the stochastic gradient method

@ A new vector v and a parameter « € [0, 1) are
introduced

0
vV a:v—n(—

vezgey ZY)) (1)

i;ieS

N
0 «— 60+ v

Chih-Jen Lin (National Taiwan Univ.) 7/18

R
Momentum ||

@ Essentially what we do is

0 < 60 — n(current sub-gradient)
—an(prev. sub-gradient)
—a’n(prev. prev. sub-gradient) — - - -

@ Thus we are using an exponentially weighted
average of sub-gradients

@ Because at each iteration we select a subset of data
to get an approximate gradient, the resulting
directions may be noisy

Chih-Jen Lin (National Taiwan Univ.) 8/18

R
Momentum Il

@ Conceptually, a moving average may make the
direction closer to the true one, so we get faster
convergence

@ However, the rule in (1) may be biased toward the
initial value

@ Thus we need bias correction

@ This will be discussed later

Chih-Jen Lin (National Taiwan Univ.) 9/18

]
AdaGrad |

@ Scaling learning rates inversely proportional to the
square root of sum of past gradient squares (Duchi

et al., 2011)
e Update rule:

0
g « -+ VeZé’Hy Z)

|f;‘ ii€S
r < r+ é{ (:) é{
€
0 «— 60—
\/7+5®g

@ r: sum of past gradient squares

10/18

Chih-Jen Lin (National Taiwan Univ.)

]
AdaGrad Il

€ and ¢ are given constants

@ ®: Hadamard product (element-wise product of two
vectors/matrices)

o A large g component
= a larger r component
= fast decrease of the learning rate
e Conceptual explanation from Duchi et al. (2011):

o frequently occurring features = low learning
rates
o infrequent features = high learning rates

Chih-Jen Lin (National Taiwan Univ.) 11/18

AdaGrad IlI

“the intuition is that each time an infrequent
feature is seen, the learner should take notice.”

@ But how is this explanation related to g
components?

@ Let's consider linear classification. Recall our
optimization problem is

WTW

/
—+ C;&(W;ynxf)

Chih-Jen Lin (National Taiwan Univ.) 12/18

]
AdaGrad IV

@ For methods such as SVM or logistic regression, the
loss function can be written as a function of w’x

E(wiy, x) =é(w'x)

Then the gradient is
I
w+ C Z &(w'x;)x;
i=1

@ Thus the gradient is related to the density of
features

Chih-Jen Lin (National Taiwan Univ.) 13/18

]
AdaGrad V

@ The above analysis is for linear classification
@ But now we have a non-convex neural network!

@ Empirically, people find that the sum of squared
gradient since the beginning causes too fast
decrease of the learning rate

Chih-Jen Lin (National Taiwan Univ.) 14 /18

-
RMSProp |

@ The original reference seems to be the lecture slides
at https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf

@ ldea: they think AdaGrad’s learning rate may be too
small before reaching a locally convex region

@ That is, OK to sum all past gradient squares in
convex, but not non-convex

@ Thus they do “exponentially weighted moving
average”

Chih-Jen Lin (National Taiwan Univ.) 15/18

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

-
RMSProp |l

e Update rule

r < pr+(l-plgog
0 «— 60— ©g

O+ r

@ AdaGrad:

r < r+gog
€
0 0 —
= Vr+o

Chih-Jen Lin (National Taiwan Univ.) 16 /18

©g

-
RMSProp Il

@ Somehow the setting is a bit heuristic and the
reason behind the change (from AdaGrad to
RMSProp) is not really that strong

Chih-Jen Lin (National Taiwan Univ.) 17 /18

R
References |

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.

Chih-Jen Lin (National Taiwan Univ.) 18/18

	References

