
NN Optimization Problem I

Recall that the NN optimization problem is

min
θ

f (θ)

where

f (θ) =
1

2C
θTθ +

1

l

∑l

i=1
ξ(zL+1,i(θ); y i ,Z 1,i)

Let’s simplify the loss part

f (θ) =
1

2C
θTθ +

1

l

∑l

i=1
ξ(θ; y i ,Z 1,i)

The issue now is how to do the minimization
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Gradient Descent I

This is one of the most used optimization method

First-order approximation

f (θ + ∆θ) ≈ f (θ) +∇f (θ)T∆θ,

where

∇f (θ) =


∂f (θ)
∂θ1...
∂f (θ)
∂θn


is the gradient of f (θ)
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Gradient Descent II

Solve

min
∆θ

∇f (θ)T∆θ

subject to ‖∆θ‖ = 1 (1)

to find a direction ∆θ

The constraint ‖∆θ‖ = 1 is needed. Otherwise, the
above sub-problem goes to −∞
The solution of (1) is

∆θ = − ∇f (θ)

‖∇f (θ)‖
(2)

Chih-Jen Lin (National Taiwan Univ.) 3 / 15



Gradient Descent III

This is called the steepest descent direction

However, because we only consider an
approximation

f (θ + ∆θ) ≈ f (θ) +∇f (θ)T∆θ

we may not have the strict decrease of the function
value

That is,
f (θ) < f (θ + ∆θ)

may occur
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Gradient Descent IV

But in general we need the descent property to get
the convergence

We have

f (θ + α∆θ) =f (θ) + α∇f (θ)T∆θ+

1

2
α2∆θT∇2f (θ)∆θ + · · · ,

where

∇2f (θ) =


∂2f

∂θ1∂θ1
· · · ∂2f

∂θ1∂θn...
...

∂2f
∂θn∂θ1

· · · ∂2f
∂θn∂θn
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Gradient Descent V

is the Hessian of f (θ)

If
∇f (θ)T∆θ < 0,

then a small enough α can ensure

f (θ + α∆θ) < f (θ)

Thus in optimization for any direction (not
necessarily the steepest descent direction), it is
called a descent direction if

∇f (θ)T∆θ < 0
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Gradient Descent VI

The direction chosen in (2) is a descent direction:

−∇f (θ)T
∇f (θ)

‖∇f (θ)‖
< 0.
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Line Search I

We have seen that we need a step size α such that

f (θ + α∆θ) < f (θ)

In optimization this is called a line search procedure

Exact line search

min
α

f (θ + α∆θ)

This is a one-dimensional optimization problem

In practice, people use backtracking line search
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Line Search II

We check
α = 1, β, β2, . . .

with β ∈ (0, 1) until

f (θ + α∆θ) < f (θ) + ν∇f (θ)T (α∆θ)

Here

ν ∈ (0,
1

2
)

The convergence is well established.
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Line Search III

For example, if the steepest descent direction is used
with the backtracking line search, Corollary 1.1.2 at
https://sites.math.washington.edu/~burke/

crs/408/notes/nlp/line.pdf shows that for
every limit point θ̄ of a convergent subsequence of
{θk}, where k is the iteration index, we have

∇f (θ̄) = 0

This means we can reach a stationary point of a
non-convex problem
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Line Search IV

The back-tracking line search procedure is simple
and useful in practice
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Practical Use of Gradient Descent I

It is known that the convergence is slow for difficult
problems

Thus in many optimization applications, methods of
using second-order information (e.g., quasi Newton
or Newton) are preferred

f (θ+ ∆θ) ≈ f (θ) +∇f (θ)T∆θ+
1

2
∆θT∇2f (θ)∆θ

These methods have fast final convergence

An illustration (modified from Tsai et al. (2014))
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Practical Use of Gradient Descent II
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Slow final convergence Fast final convergence

But fast final convergence may not be needed in
machine learning
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Practical Use of Gradient Descent III

The reason is that an optimal solution θ∗ may not
lead to the best model

We will discuss such issues again later
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