
Expectation on a Single Iteration I

Recall earlier we derived

T−1∑
t=0

αtE [∥∇f (θt)∥2]

≤ f (θ0)− f ∗ +
T−1∑
t=0

α2
tG

2L

2
, (1)

Let’s get a better representation by taking the
expectation on a single iteration

Assume that we run up to a random number of
iteration τ
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Expectation on a Single Iteration II

And τ follows the following probability distribution

P(τ = t) =
αt∑T−1

k=0 αk

The expected squared-norm of the gradient is

Eτ,ĩ0,...,ĩτ−1
[∥∇f (θτ)∥2]

=
T−1∑
t=0

Eĩ0,...,ĩt−1
[∥∇f (θt)∥2]P(τ = t)

=

(
T−1∑
k=0

αk

)−1 T−1∑
t=0

αtE [∥∇f (θt)∥2] (2)
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Expectation on a Single Iteration III

From (2) and (1),

E [∥∇f (θτ)∥2]

≤

(
T−1∑
k=0

αk

)−1(
f (θ0)− f ∗ +

G 2L

2

T−1∑
t=0

α2
t

)
(3)
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Expectation on a Single Iteration IV

If the learning rate is a constant αt = α, then

E [∥∇f (θτ)∥2]

≤ (Tα)−1

(
f (θ0)− f ∗ +

G 2L

2
Tα2

)
=

f (θ0)− f ∗

αT
+

αLG 2

2

The right-hand side does not go to zero as T → ∞
due to the term

αLG 2

2
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Reducing the Learning Rate I

We can make it zero by decreasing the learning rate
over time

To make the right-hand side of (3) go to zero, we
need

T−1∑
t=0

αt grows much faster than
T−1∑
t=0

α2
t

An example is

αt =
1√
t + 1
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Reducing the Learning Rate II

We have

T−1∑
t=0

αt =
T−1∑
t=0

1√
t + 1

≈
∫ T

0

1√
x
dx

= 2x1/2
∣∣∣T
0
= 2

√
T
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Reducing the Learning Rate III

and

T−1∑
t=0

α2
t =

T−1∑
t=0

1

t + 1

≈
∫ T+1

1

1

x
dx

= log x
∣∣∣T+1

1
= log(T + 1)
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Reducing the Learning Rate IV

Now (3) becomes

E [∥∇f (θτ)∥2]

⪅ (2
√
T )−1

(
f (θ0)− f ∗ +

G 2L

2
(log(T + 1))

)
=

2(f (θ0)− f ∗) + G 2L log(T + 1)

4
√
T

= O(
logT√

T
)

The value goes to zero as T increases
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