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Expectation on a Single Iteration |

@ Recall earlier we derived
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o Let's get a better representation by taking the
expectation on a single iteration

@ Assume that we run up to a random number of
iteration 7
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@ And 7 follows the following probability distribution
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@ The expected squared-norm of the gradient is
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e From (2) and (1),
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@ If the learning rate is a constant a; = «, then
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@ The right-hand side does not go to zero as T — o0

due to the term
al G?
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@ We can make it zero by decreasing the learning rate
over time

@ To make the right-hand side of (3) go to zero, we

need
T-1 T-1
E a grows much faster than g o

@ An example is
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@ We have
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and

T-1
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}TH = log(T + 1)

= logx
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@ Now (3) becomes
E[IV(6-)II%) :
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@ The value goes to zero as T increases
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