Expectation on a Single Iteration I

- Recall earlier we derived

$$
\begin{align*}
& \sum_{t=0}^{T-1} \alpha_{t} E\left[\left\|\nabla f\left(\boldsymbol{\theta}_{t}\right)\right\|^{2}\right] \\
\leq & f\left(\boldsymbol{\theta}_{0}\right)-f^{*}+\sum_{t=0}^{T-1} \frac{\alpha_{t}^{2} G^{2} L}{2},
\end{align*}
$$

- Let's get a better representation by taking the expectation on a single iteration
- Assume that we run up to a random number of iteration τ

Expectation on a Single Iteration II

- And τ follows the following probability distribution

$$
P(\tau=t)=\frac{\alpha_{t}}{\sum_{k=0}^{T-1} \alpha_{k}}
$$

- The expected squared-norm of the gradient is

$$
\begin{align*}
& E_{\tau, \tilde{i}_{0}, \ldots, \tilde{i}_{\tau-1}}\left[\left\|\nabla f\left(\boldsymbol{\theta}_{\tau}\right)\right\|^{2}\right] \\
= & \sum_{t=0}^{T-1} E_{\tilde{i}_{0}, \ldots, \tilde{i}_{t-1}}\left[\left\|\nabla f\left(\boldsymbol{\theta}_{t}\right)\right\|^{2}\right] P(\tau=t) \\
= & \left(\sum_{k=0}^{T-1} \alpha_{k}\right)^{-1} \sum_{t=0}^{T-1} \alpha_{t} E\left[\left\|\nabla f\left(\boldsymbol{\theta}_{t}\right)\right\|^{2}\right]
\end{align*}
$$

Expectation on a Single Iteration III

- From (2) and (1),

$$
\begin{aligned}
& E\left[\left\|\nabla f\left(\boldsymbol{\theta}_{\tau}\right)\right\|^{2}\right] \\
\leq & \left(\sum_{k=0}^{T-1} \alpha_{k}\right)^{-1}\left(f\left(\boldsymbol{\theta}_{0}\right)-f^{*}+\frac{G^{2} L}{2} \sum_{t=0}^{T-1} \alpha_{t}^{2}\right)(3)
\end{aligned}
$$

Expectation on a Single Iteration IV

- If the learning rate is a constant $\alpha_{t}=\alpha$, then

$$
\begin{aligned}
& E\left[\left\|\nabla f\left(\boldsymbol{\theta}_{\tau}\right)\right\|^{2}\right] \\
\leq & (T \alpha)^{-1}\left(f\left(\boldsymbol{\theta}_{0}\right)-f^{*}+\frac{G^{2} L}{2} T \alpha^{2}\right) \\
= & \frac{f\left(\boldsymbol{\theta}_{0}\right)-f^{*}}{\alpha T}+\frac{\alpha L G^{2}}{2}
\end{aligned}
$$

- The right-hand side does not go to zero as $T \rightarrow \infty$ due to the term

$$
\frac{\alpha L G^{2}}{2}
$$

Reducing the Learning Rate I

- We can make it zero by decreasing the learning rate over time
- To make the right-hand side of (3) go to zero, we need

$$
\sum_{t=0}^{T-1} \alpha_{t} \text { grows much faster than } \sum_{t=0}^{T-1} \alpha_{t}^{2}
$$

- An example is

$$
\alpha_{t}=\frac{1}{\sqrt{t+1}}
$$

Reducing the Learning Rate II

- We have

$$
\begin{aligned}
& \sum_{t=0}^{T-1} \alpha_{t}=\sum_{t=0}^{T-1} \frac{1}{\sqrt{t+1}} \\
\approx & \int_{0}^{T} \frac{1}{\sqrt{x}} d x \\
= & \left.2 x^{1 / 2}\right|_{0} ^{T}=2 \sqrt{T}
\end{aligned}
$$

Reducing the Learning Rate III

and

$$
\begin{aligned}
& \sum_{t=0}^{T-1} \alpha_{t}^{2}=\sum_{t=0}^{T-1} \frac{1}{t+1} \\
\approx & \int_{1}^{T+1} \frac{1}{x} d x \\
= & \left.\log x\right|_{1} ^{T+1}=\log (T+1)
\end{aligned}
$$

Reducing the Learning Rate IV

- Now (3) becomes

$$
\begin{aligned}
& E\left[\left\|\nabla f\left(\boldsymbol{\theta}_{\tau}\right)\right\|^{2}\right] \\
\lesssim & (2 \sqrt{T})^{-1}\left(f\left(\boldsymbol{\theta}_{0}\right)-f^{*}+\frac{G^{2} L}{2}(\log (T+1))\right) \\
= & \frac{2\left(f\left(\boldsymbol{\theta}_{0}\right)-f^{*}\right)+G^{2} L \log (T+1)}{4 \sqrt{T}}=O\left(\frac{\log T}{\sqrt{T}}\right)
\end{aligned}
$$

- The value goes to zero as T increases

