Optimization Problems: Fully-connected Networks

Chih-Jen Lin

National Taiwan University
Last updated: April 23, 2021

Multi-class Classification I

- Our training set includes $\left(y^{i}, \boldsymbol{x}^{i}\right), i=1, \ldots, l$.
- $x^{i} \in R^{n_{1}}$ is the feature vector.
- $y^{i} \in R^{K}$ is the label vector.
- As label is now a vector, we change (label, instance) from

$$
\left(y_{i}, x_{i}\right) \text { to }\left(\boldsymbol{y}^{i}, \boldsymbol{x}^{i}\right)
$$

- K: \# of classes
- If \boldsymbol{x}^{i} is in class k, then

$$
\boldsymbol{y}^{i}=[\underbrace{0, \ldots, 0}_{k-1}, 1,0, \ldots, 0]^{T} \in R^{K}
$$

Multi-class Classification II

- A neural network maps each feature vector to one of the class labels by the connection of nodes.

Fully-connected Networks

- Between two layers a weight matrix maps inputs (the previous layer) to outputs (the next layer).

Operations Between Two Layers I

- The weight matrix W^{m} at the m th layer is

$$
W^{m}=\left[\begin{array}{cccc}
w_{11}^{m} & w_{12}^{m} & \cdots & w_{11}^{m} \\
w_{21}^{m} & w_{22}^{m} & \cdots & w_{2 n_{m}}^{m} \\
\vdots & \vdots & \vdots & \vdots \\
w_{n_{m+1} 1}^{m} & w_{n_{m+1} 2}^{m} & \cdots & w_{n_{m+1} n_{m}}^{m}
\end{array}\right]_{n_{m+1} \times n_{m}}
$$

- $n_{m}: \#$ input features at layer m
- n_{m+1} : \# output features at layer m, or \# input features at layer $m+1$
- L : number of layers

Operations Between Two Layers II

- $n_{1}=\#$ of features, $n_{L+1}=\#$ of classes
- Let z^{m} be the input of the m th layer, $z^{1}=\boldsymbol{x}$ and z^{L+1} be the output
- From m th layer to $(m+1)$ th layer

$$
\begin{aligned}
\boldsymbol{s}^{m} & =W^{m} \boldsymbol{z}^{m} \\
z_{j}^{m+1} & =\sigma\left(s_{j}^{m}\right), j=1, \ldots, n_{m+1}
\end{aligned}
$$

$\sigma(\cdot)$ is the activation function.

Operations Between Two Layers III

- Usually people do a bias term

$$
\left[\begin{array}{c}
b_{1}^{m} \\
b_{2}^{m} \\
\vdots \\
b_{n_{m+1}}^{m}
\end{array}\right]_{n_{m+1} \times 1}
$$

so that

$$
\boldsymbol{s}^{m}=W^{m} \boldsymbol{z}^{m}+\boldsymbol{b}^{m}
$$

Operations Between Two Layers IV

- Activation function is usually an

$$
R \rightarrow R
$$

non-linear transformation.

- There are various reasons of using an activation function. An important one is to introduce the non-linearity.

Operations Between Two Layers V

- If without an activation function, all

$$
W^{L} \cdots W^{2} W^{1}
$$

becomes a single matrix and we end up with having only a linear mapping from the input feature to the output layer

Operations Between Two Layers VI

- We collect all variables:

$$
\boldsymbol{\theta}=\left[\begin{array}{c}
\operatorname{vec}\left(W^{1}\right) \\
\boldsymbol{b}^{1} \\
\vdots \\
\operatorname{vec}\left(W^{L}\right) \\
\boldsymbol{b}^{L}
\end{array}\right] \in R^{n}
$$

$n:$ total $\#$ variables $=\left(n_{1}+1\right) n_{2}+\cdots+\left(n_{L}+1\right) n_{L+1}$

- The vec (\cdot) operator stacks columns of a matrix to a vector

Optimization Problem I

- We solve the following optimization problem,
$\min _{\boldsymbol{\theta}} \quad f(\boldsymbol{\theta}), \quad$ where

$$
f(\boldsymbol{\theta})=\frac{1}{2} \boldsymbol{\theta}^{T} \boldsymbol{\theta}+C \sum_{i=1}^{l} \xi\left(\boldsymbol{z}^{L+1, i}(\boldsymbol{\theta}) ; \boldsymbol{y}^{i}, \boldsymbol{x}^{i}\right)
$$

C : regularization parameter

- $z^{L+1}(\theta) \in R^{n_{L+1}}$: last-layer output vector of \boldsymbol{x}. $\xi\left(z^{L+1} ; \boldsymbol{y}, \boldsymbol{x}\right)$: loss function. Example:

$$
\xi\left(z^{L+1} ; \boldsymbol{y}, \boldsymbol{x}\right)=\left\|z^{L+1}-\boldsymbol{y}\right\|^{2}
$$

Optimization Problem II

- The formulation is same as linear classification
- However, the loss function is more complicated
- Further, it's non-convex
- Note that in the earlier discussion we consider a single instance
- In the training process we actually have for $i=1, \ldots, l$,

$$
\begin{aligned}
\boldsymbol{s}^{m, i} & =W^{m} \boldsymbol{z}^{m, i} \\
z_{j}^{m+1, i} & =\sigma\left(s_{j}^{m, i}\right), j=1, \ldots, n_{m+1}
\end{aligned}
$$

This makes the training more complicated

