Summary of a Convolutional Layer I

- Padding and pooling are optional in a convolutional layer, but they are frequently used
- Thus we discuss details of considering all operations together.
- The whole convolutional layer involves the following procedure:

$$
Z^{m, i} \rightarrow \text { padding }
$$

\rightarrow convolutional operations
\rightarrow pooling $\rightarrow Z^{m+1, i}$,

Summary of a Convolutional Layer II

where $Z^{m, i}$ and $Z^{m+1, i}$ are input and output of the m th layer, respectively.

- Let the following symbols denote image sizes at different stages of the convolutional layer.
a^{m}, b^{m} : size in the beginning $a_{\text {pad }}^{m}, b_{\text {pad }}^{m}$: size after padding $a_{\text {conv }}^{m}, b_{\text {conv }}^{m}$: size after convolution.
- The following table indicates how these values are $a^{\text {in }}, b^{\text {in }}, d^{\text {in }}$ and $a^{\text {out }}, b^{\text {out }}, d^{\text {out }}$ at different stages.

Summary of a Convolutional Layer III

Operation	Input	Output
Padding	$Z^{m, i}$	$\operatorname{pad}\left(Z^{m, i}\right)$
Convolution	$\operatorname{pad}\left(Z^{m, i}\right)$	$S^{m, i}$
Convolution	$S^{m, i}$	$\sigma\left(S^{m, i}\right)$
Pooling	$\sigma\left(S^{m, i}\right)$	$Z^{m+1, i}$

Operation $\quad a^{\text {in }}, b^{\text {in }}, d^{\text {in }} \quad a^{\text {out }}, b^{\text {out }}, d^{\text {out }}$ Padding $\quad a^{m}, b^{m}, d^{m} \quad a_{\text {pad }}^{m}, b_{\text {pad }}^{m}, d^{m}$
Convolution $a_{\text {pad }}^{m}, b_{\text {pad }}^{m}, d^{m} \quad a_{\text {conv }}^{m}, b_{\text {conv, }}^{m}, d^{m+1}$
Convolution $a_{\text {conv }}^{m}, b_{\text {conv }}^{m}, d^{m+1} a_{\text {conv }}^{m}, b_{\text {conv, }}^{m}, d^{m+1}$
Pooling $\quad a_{\text {conv }}^{m}, b_{\text {conv }}^{m}, d^{m+1} a^{m+1}, b^{m+1}, d^{m+1}$

Summary of a Convolutional Layer IV

- Let the filter size, mapping matrices and weight matrices at the m th layer be

$$
h^{m}, P_{\text {pad }}^{m}, P_{\phi}^{m}, P_{\text {pool }}^{m, i}, W^{m}, \boldsymbol{b}^{m} .
$$

- Then all operations can be summarized as

$$
\begin{aligned}
S^{m, i}= & W^{m} \operatorname{mat}\left(P_{\phi}^{m} P_{\text {pad }}^{m} \operatorname{vec}\left(Z^{m, i}\right)\right)_{h^{m} h^{m} d^{m} \times a_{\text {conv }}^{m} b_{\text {conv }}^{m}+}+\boldsymbol{b}^{m} \mathbb{1}_{a^{\text {conv }} \text { bconv }}^{T}
\end{aligned}
$$

$$
\begin{equation*}
Z^{m+1, i}=\operatorname{mat}\left(P_{\text {pool }}^{m, i} \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)\right)_{d^{m+1} \times a^{m+1} b^{m+1}} \tag{2}
\end{equation*}
$$

Fully-Connected Layer I

- Assume L^{C} is the number of convolutional layers
- Input vector of the first fully-connected layer:

$$
z^{m, i}=\operatorname{vec}\left(Z^{m, i}\right), i=1, \ldots, l, m=L^{c}+1
$$

- In each of the fully-connected layers ($L^{c}<m \leq L$), we consider weight matrix and bias vector between layers m and $m+1$.

Fully-Connected Layer II

- Weight matrix:

$$
W^{m}=\left[\begin{array}{cccc}
w_{11}^{m} & w_{12}^{m} & \cdots & w_{1 n_{m}}^{m} \tag{3}\\
w_{21}^{m} & w_{22}^{m} & \cdots & w_{2 n_{m}}^{m} \\
\vdots & \vdots & \vdots & \vdots \\
w_{n_{m+1} 1}^{m} & w_{n_{m+1} 2}^{m} & \cdots & w_{n_{m+1} n_{m}}^{m}
\end{array}\right]_{n_{m+1} \times n_{m}}
$$

- Bias vector

$$
\boldsymbol{b}^{m}=\left[\begin{array}{c}
b_{1}^{m} \\
b_{2}^{m} \\
\vdots \\
b_{n_{m+1}}^{m}
\end{array}\right]_{n_{m+1} \times 1}
$$

Fully-Connected Layer III

Here n_{m} and n_{m+1} are the numbers of nodes in layers m and $m+1$, respectively.

- If $z^{m, i} \in R^{n_{m}}$ is the input vector, the following operations are applied to generate the output vector $z^{m+1, i} \in R^{n_{m+1}}$.

$$
\begin{align*}
\boldsymbol{s}^{m, i} & =W^{m} \boldsymbol{z}^{m, i}+\boldsymbol{b}^{m} \tag{4}\\
z_{j}^{m+1, i} & =\sigma\left(s_{j}^{m, i}\right), j=1, \ldots, n_{m+1} \tag{5}
\end{align*}
$$

Challenges in NN Optimization

- The objective function is non-convex. It may have many local minima
- It's known that global optimization is much more difficult than local minimization
- The problem structure is very complicated

