Summary of a Convolutional Layer I

- Padding and pooling are optional in a convolutional layer, but they are frequently used
- Thus we discuss details of considering all operations together.
- The whole convolutional layer involves the following procedure:

$$Z^{m,i} o ext{padding} \ o ext{convolutional operations} \ o ext{pooling} \ o Z^{m+1,i},$$

(1)

Summary of a Convolutional Layer II

where $Z^{m,i}$ and $Z^{m+1,i}$ are input and output of the *m*th layer, respectively.

• Let the following symbols denote image sizes at different stages of the convolutional layer.

 a^m , b^m : size in the beginning a^m_{pad} , b^m_{pad} : size after padding a^m_{conv} , b^m_{conv} : size after convolution.

• The following table indicates how these values are $a^{\text{in}}, b^{\text{in}}, d^{\text{in}}$ and $a^{\text{out}}, b^{\text{out}}, d^{\text{out}}$ at different stages.

Summary of a Convolutional Layer III

Operation		Input	Output
Padding		$Z^{m,i}$	$pad(Z^{m,i})$
Convolution		$pad(Z^{m,i})$	S ^{m,i}
Convolution		S ^{m,i}	$\sigma(S^{m,i})$
Pooling		$\sigma(S^{m,i})$	$Z^{m+1,i}$
Operation	a ⁱⁿ , b ⁱⁿ ,	d ⁱⁿ	$a^{\mathrm{out}}, b^{\mathrm{out}}, d^{\mathrm{out}}$
Padding	$a^m, b^m,$	d^m	$a_{pad}^m, b_{pad}^m, d^m$
Convolution	a_{pad}^m, b_p^n	$_{ad}^n, d^m$	$a_{\text{conv}}^m, b_{\text{conv}}^m, d^{m+1}$
Convolution	$\dot{a_{\rm conv}}^m, \dot{b}$	$_{\rm conv}^m, d^{m+1}$	$a_{\text{conv}}^m, b_{\text{conv}}^m, d^{m+1}$
Pooling	- <i>m L</i>	$m \downarrow m+1$	m+1 $hm+1$ $dm+1$

メロト メポト メヨト メヨト 二日

Summary of a Convolutional Layer IV

• Let the filter size, mapping matrices and weight matrices at the *m*th layer be

$$h^m$$
, P^m_{pad} , P^m_{ϕ} , $P^{m,i}_{pool}$, W^m , \boldsymbol{b}^m .

• Then all operations can be summarized as

$$S^{m,i} = W^m ext{mat}(P^m_{\phi}P^m_{ ext{pad}} ext{vec}(Z^{m,i}))_{h^m h^m d^m imes a^m_{ ext{conv}}b^m_{ ext{conv}}} + m{b}^m \mathbbm{1}^T_{a^{ ext{conv}}b^{ ext{conv}}}$$

$$Z^{m+1,i} = \operatorname{mat}(P^{m,i}_{\operatorname{pool}}\operatorname{vec}(\sigma(S^{m,i})))_{d^{m+1} \times a^{m+1}b^{m+1}}, \quad (2)$$

Fully-Connected Layer I

- Assume L^{C} is the number of convolutional layers
- Input vector of the first fully-connected layer:

$$z^{m,i} = \operatorname{vec}(Z^{m,i}), \ i = 1, \dots, I, \ m = L^{c} + 1.$$

 In each of the fully-connected layers (L^c < m ≤ L), we consider weight matrix and bias vector between layers m and m + 1.

Fully-Connected Layer II

• Weight matrix:

$$W^{m} = \begin{bmatrix} w_{11}^{m} & w_{12}^{m} & \cdots & w_{1n_{m}}^{m} \\ w_{21}^{m} & w_{22}^{m} & \cdots & w_{2n_{m}}^{m} \\ \vdots & \vdots & \vdots & \vdots \\ w_{n_{m+1}1}^{m} & w_{n_{m+1}2}^{m} & \cdots & w_{n_{m+1}n_{m}}^{m} \end{bmatrix}_{n_{m+1} \times n_{m}}$$
(3)

• Bias vector

$$\boldsymbol{b}^{m} = \begin{bmatrix} b_{1}^{m} \\ b_{2}^{m} \\ \vdots \\ b_{n_{m+1}}^{m} \end{bmatrix}_{n_{m+1} \times 1}$$

Fully-Connected Layer III

Here n_m and n_{m+1} are the numbers of nodes in layers m and m + 1, respectively.

If z^{m,i} ∈ R^{nm} is the input vector, the following operations are applied to generate the output vector z^{m+1,i} ∈ R^{nm+1}.

$$\boldsymbol{s}^{m,i} = \boldsymbol{W}^m \boldsymbol{z}^{m,i} + \boldsymbol{b}^m, \qquad (4)$$

$$z_j^{m+1,i} = \sigma(s_j^{m,i}), \ j = 1, \dots, n_{m+1}.$$
 (5)

イロト イヨト イヨト

Challenges in NN Optimization

- The objective function is non-convex. It may have many local minima
- It's known that global optimization is much more difficult than local minimization
- The problem structure is very complicated