Optimization Methods Other than Stochastic Gradient

- We have explained why stochastic gradient is popular for deep learning
- The same reasons may explain why other methods are not suitable for deep learning
- But we also notice that from the simplest SG to what people are using many modifications were made
- Can we extend other optimization methods to be suitable for deep learning?

Newton Method

Consider an optimization problem

$$\min_{\boldsymbol{\theta}} f(\boldsymbol{\theta})$$

 Newton method solves the 2nd-order approximation to get a direction d

$$\min_{\boldsymbol{d}} \quad \nabla f(\boldsymbol{\theta})^T \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \nabla^2 f(\boldsymbol{\theta}) \boldsymbol{d}$$
 (1)

• If $f(\theta)$ isn't strictly convex, (1) may not have a unique solution

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

Newton Method (Cont'd)

- We may use a positive-definite G to approximate $\nabla^2 f(\theta)$.
- Then (1) can be solved by

$$Gd = -\nabla f(\theta)$$

The resulting direction is a descent one

$$\nabla f(\boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{d} = -\nabla f(\boldsymbol{\theta})^{\mathsf{T}} G^{-1} \nabla f(\boldsymbol{\theta}) < 0$$

Newton Method (Cont'd)

The procedure:

while stopping condition not satisfied do Let G be $\nabla^2 f(\theta)$ or its approximation Exactly or approximately solve

$$Gd = -\nabla f(\theta)$$

Find a suitable step size α Update

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{d}$$
.

end while

Step Size I

- Selection of the step size α : usually two types of approaches
 - Line search
 - Trust region (or its predecessor: Levenberg-Marquardt algorithm)
- If using line search, details are similar to what we had for gradient descent
- ullet We gradually reduce lpha such that

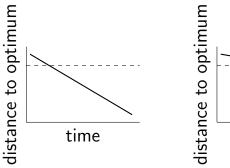
$$f(\boldsymbol{\theta} + \alpha \boldsymbol{d}) < f(\boldsymbol{\theta}) + \nu \nabla f(\boldsymbol{\theta})^{\mathsf{T}} (\alpha \boldsymbol{d})$$

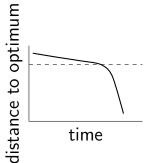
Newton versus Gradient Descent I

- We know they use second-order and first-order information respectively
- What are their special properties?
- It is known that using higher order information leads to faster final local convergence

Newton versus Gradient Descent II

 An illustration (modified from Tsai et al. (2014)) presented earlier





Slow final convergence Fast final convergence

Newton versus Gradient Descent III

- But for machine learning (especially if the problem is non-convex) we mentioned that fast local convergence may not be needed
- However, higher-order methods tend to be more robust
- Their behavior may be more consistent across easy and difficult problems
- It is known that stochastic gradient is sometimes sensitive to parameters
- Thus what we hope to try here is if we can have a more robust optimization method

Difficulties of Newton for NN I

• The Newton linear system

$$Gd = -\nabla f(\theta) \tag{2}$$

can be large.

$$G \in \mathbb{R}^{n \times n}$$
,

where n is the total number of variables

Thus G is often too large to be stored

Difficulties of Newton for NN II

• Evan if we can store G, calculating

$$\boldsymbol{d} = -G^{-1}\nabla f(\boldsymbol{\theta})$$

is usually very expensive

 Thus a direct use of Newton for deep learning is hopeless

Existing Works Trying to Make Newton Practical I

- Many works have been available
- Their approaches significantly vary
- I roughly categorize them to two groups
 - Hessian-free (Martens, 2010; Martens and Sutskever, 2012; Wang et al., 2020; Henriques et al., 2018)
 - Hessian approximation (Martens and Grosse, 2015; Botev et al., 2017; Zhang et al., 2017)
 In particular, diagonal approximation

Existing Works Trying to Make Newton Practical II

- There are many others where I didn't put into the above two groups for various reasons (Osawa et al., 2019; Wang et al., 2018; Chen et al., 2019; Wilamowski et al., 2007)
- There are also comparisons (Chen and Hsieh, 2018)
- With the many possibilities it is difficult to reach conclusions
- We decide to first check the robustness of standard Newton methods on small-scale data

Existing Works Trying to Make Newton Practical III

Thus in our discussion we try not to do approximations

References I

- A. Botev, H. Ritter, and D. Barber. Practical Gauss-Newton optimisation for deep learning. In Proceedings of the 34th International Conference on Machine Learning, pages 557–565, 2017.
- P. H. Chen and C.-J. Hsieh. A comparison of second-order methods for deep convolutional neural networks, 2018. URL https://openreview.net/forum?id=HJYoqzbC-.
- S.-W. Chen, C.-N. Chou, and E. Y. Chang. An approximate second-order method for training fully-connected neural networks. In *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence*, 2019.
- J. F. Henriques, S. Ehrhardt, S. Albanie, and A. Vedaldi. Small steps and giant leaps: Minimal Newton solvers for deep learning, 2018. arXiv preprint 1805.08095.
- J. Martens. Deep learning via Hessian-free optimization. In *Proceedings of the 27th International Conference on Machine Learning (ICML)*, 2010.
- J. Martens and R. Grosse. Optimizing neural networks with Kronecker-factored approximate curvature. In *Proceedings of the 32nd International Conference on Machine Learning*, pages 2408–2417, 2015.
- J. Martens and I. Sutskever. Training deep and recurrent networks with Hessian-free optimization. In *Neural Networks: Tricks of the Trade*, pages 479–535. Springer, 2012.

References II

- K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka. Large-scale distributed second-order optimization using kronecker-factored approximate curvature for deep convolutional neural networks. In *Proceedings of the IEEE Conference on Computer Vision* and Pattern Recognition (CVPR), 2019.
- C.-H. Tsai, C.-Y. Lin, and C.-J. Lin. Incremental and decremental training for linear classification. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014. URL http://www.csie.ntu.edu.tw/~cjlin/papers/ws/inc-dec.pdf.
- C.-C. Wang, K.-L. Tan, C.-T. Chen, Y.-H. Lin, S. S. Keerthi, D. Mahajan, S. Sundararajan, and C.-J. Lin. Distributed Newton methods for deep learning. *Neural Computation*, 30(6): 1673–1724, 2018. URL http://www.csie.ntu.edu.tw/~cjlin/papers/dnn/dsh.pdf.
- C.-C. Wang, K. L. Tan, and C.-J. Lin. Newton methods for convolutional neural networks. ACM Transactions on Intelligent Systems and Technology, 11(2):19:1-19:30, 2020. URL https://www.csie.ntu.edu.tw/~cjlin/papers/cnn/newton-CNN.pdf.
- B. M. Wilamowski, N. Cotton, J. Hewlett, and O. Kaynak. Neural network trainer with second order learning algorithms. In *In Proceedings of the 11th International Conference on Intelligent Engineering Systems*, 2007.
- H. Zhang, C. Xiong, J. Bradbury, and R. Socher. Block-diagonal Hessian-free optimization for training neural networks, 2017. arXiv preprint arXiv:1712.07296.