Newton Methods for Neural Networks:
 Gauss Newton Matrix-vector Product

Chih-Jen Lin
National Taiwan University

Outline

(1) Backward setting

- Jacobian evaluation
- Gauss-Newton Matrix-vector products
(2) Forward + backward settings
- R operator
- Gauss-Newton matrix-vector product
(3) Complexity analysis

Outline

(1) Backward setting

- Jacobian evaluation
- Gauss-Newton Matrix-vector products
(2) Forward + backward settings
- R operator
- Gauss-Newton matrix-vector product

Complexity analysis

Outline

(1) Backward setting

- Jacobian evaluation
- Gauss-Newton Matrix-vector products
(2) Forward + backward settings
- R operator
- Gauss-Newton matrix-vector product

Complexity analysis

Jacobian Evaluation: Convolutional Layer I

- For an instance i the Jacobian can be partitioned into L blocks according to layers

$$
J^{i}=\left[\begin{array}{llll}
J^{1, i} & J^{2, i} & \ldots & J^{L, i} \tag{1}
\end{array}\right], m=1, \ldots, L
$$

where

$$
J^{m, i}=\left[\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}} \frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{b}^{m}\right)^{T}}\right]
$$

- The calculation seems to be very similar to that for the gradient.

Jacobian Evaluation: Convolutional Layer

 II- For the convolutional layers, recall for gradient we have

$$
\frac{\partial f}{\partial W^{m}}=\frac{1}{C} W^{m}+\frac{1}{l} \sum_{i=1}^{l} \frac{\partial \xi_{i}}{\partial W^{m}}
$$

and

$$
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}}=\operatorname{vec}\left(\frac{\partial \xi_{i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T}
$$

Jacobian Evaluation: Convolutional Layer

 III- Now we have

$$
\begin{gathered}
\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}}=\left[\begin{array}{c}
\frac{\partial z_{1}^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}} \\
\vdots \\
\frac{\partial z_{L+1}^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}}
\end{array}\right] \\
=\left[\begin{array}{c}
\operatorname{vec}\left(\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T} \\
\vdots \\
\operatorname{vec}\left(\frac{\partial z_{n_{L+1}, i}^{L+1, i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T}
\end{array}\right]
\end{gathered}
$$

Jacobian Evaluation: Convolutional Layer

IV

- If \boldsymbol{b}^{m} is considered, the result is

$$
\left.\begin{array}{rl}
& \left.\left[\begin{array}{cc}
\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}} & \left.\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{b}^{m}\right)^{T}}\right] \\
= & {\left[\begin{array}{c}
\operatorname{vec}\left(\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}\right.
\end{array}\right]\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}} \\
\left.\left.\mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right]\right)^{T} \\
\vdots \\
\operatorname{vec}\left(\frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}\right. & {\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right.}
\end{array} \mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right]\right)^{T}
\end{array}\right] .
$$

Jacobian Evaluation: Convolutional Layer

- We can see that it's more complicated than gradient.
- Gradient is a vector but Jacobian is a matrix

Jacobian Evaluation: Backward Process I

- For gradient, earlier we need a backward process to calculate

$$
\frac{\partial \xi_{i}}{\partial S^{m, i}}
$$

- Now what we need are

$$
\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}, \ldots, \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}
$$

- The process is similar

Jacobian Evaluation: Backward Process II

- If with RELU activation function and max pooling, for gradient we had

$$
\begin{aligned}
& \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
= & \left(\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}\right) P_{\mathrm{pool}}^{m, i}
\end{aligned}
$$

Jacobian Evaluation: Backward Process III

- Assume that

$$
\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)}
$$

are available.

$$
\begin{aligned}
& \frac{\partial z_{j}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
= & \left(\frac{\partial z_{j}^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}\right) P_{\text {pool }}^{m, i}, \\
& j=1, \ldots, n_{L+1} .
\end{aligned}
$$

Jacobian Evaluation: Backward Process IV

- These row vectors can be written together as a matrix

$$
\begin{aligned}
& \frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
= & \left(\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot\left(\mathbb{1}_{n_{L+1}} \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}\right)\right) P_{\text {pool }}^{m, i}
\end{aligned}
$$

- Note that

$$
\mathbb{1}_{n_{L+1}} \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}
$$

duplicates the $\operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}$ vector n_{L+1} times

Jacobian Evaluation: Backward Process V

- For gradient, we use

$$
\frac{\partial \xi_{i}}{\partial S^{m, i}}
$$

to have

$$
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m, i}\right)^{T}}=\operatorname{vec}\left(\left(W^{m}\right)^{T} \frac{\partial \xi_{i}}{\partial S^{m, i}}\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m}
$$

and pass it to the previous layer

Jacobian Evaluation: Backward Process VI

- Now we need to generate

$$
\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m, i}\right)^{T}}
$$

and pass it to the previous layer.

- Now we have

$$
\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m, i}\right)^{T}}=\left[\begin{array}{cc}
\operatorname{vec}\left(\left(W^{m}\right)^{T} \frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}\right)^{T} & P_{\phi}^{m} P_{\mathrm{pad}}^{m} \\
\vdots \\
\operatorname{vec}\left(\left(W^{m}\right)^{T} \frac{\partial z_{L+1}^{L+1, i}}{\partial S^{m, i}}\right)^{T} & P_{\phi}^{m} P_{\mathrm{pad}}^{m}
\end{array}\right]
$$

Jacobian Evaluation: Fully-connected Layer I

- We do not discuss details, but list all results below

$$
\begin{aligned}
& \frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}}= \\
& {\left[\begin{array}{c}
\operatorname{vec}\left(\frac{\partial z_{1}^{L+1, i}}{\partial \boldsymbol{s}^{m, i}}\left(z^{m, i}\right)^{T}\right)^{T} \\
\vdots \\
\operatorname{vec}\left(\frac{\partial z_{n_{L+1}+i}^{L+, i}}{\partial \boldsymbol{s}^{m, i}}\left(z^{m, i}\right)^{T}\right)^{T}
\end{array}\right]}
\end{aligned}
$$

Jacobian Evaluation: Fully-connected Layer II

$$
\begin{aligned}
\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{b}^{m}\right)^{T}} & =\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{s}^{m, i}\right)^{T}}, \\
\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{s}^{m, i}\right)^{T}} & =\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{z}^{m+1, i}\right)^{T}} \odot\left(\mathbb{1}_{n_{L+1}} I\left[\boldsymbol{z}^{m+1, i}\right]^{T}\right) \\
\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{z}^{m, i}\right)^{T}} & =\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{s}^{m, i}\right)^{T}} W^{m}
\end{aligned}
$$

Jacobian Evaluation: Fully-connected Layer III

- For the layer $L+1$, if using a linear activation function with

$$
z^{L+1, i}=s^{L, i}
$$

then we have

$$
\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{s}^{L, i}\right)^{T}}=\mathcal{I}_{n_{L+1}} .
$$

Gradient versus Jacobian I

- Operations for gradient

$$
\begin{aligned}
& \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
&=\left(\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}\right) P_{\mathrm{pool}}^{m, i} \\
& \quad \frac{\partial \xi_{i}}{\partial W^{m}}=\frac{\partial \xi_{i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \\
& \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m, i}\right)^{T}}=\operatorname{vec}\left(\left(W^{m}\right)^{T} \frac{\partial \xi_{i}}{\partial S^{m, i}}\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m}
\end{aligned}
$$

Gradient versus Jacobian II

- For Jacobian we have

$$
\begin{aligned}
& \frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
= & \left(\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot\left(\mathbb{1}_{n_{L+1}} \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}\right)\right) P_{\text {pool }}^{m, i} \\
& \frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}}=\left[\begin{array}{c}
\operatorname{vec}\left(\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T} \\
\vdots \\
\operatorname{vec}\left(\frac{\partial z_{n_{L+1}^{L+1}}^{L+1}}{\partial S_{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T}
\end{array}\right]
\end{aligned}
$$

Gradient versus Jacobian III

$$
\begin{align*}
& \frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m, i}\right)^{T}} \\
= & {\left[\begin{array}{c}
\operatorname{vec}\left(\left(W^{m}\right)^{T} \frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}\right)^{T} \\
\vdots \\
P_{\phi}^{m} P_{\text {pad }}^{m} \\
\operatorname{vec}\left(\left(W^{m}\right)^{T} \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}\right)^{T} \\
P_{\phi}^{m} P_{\text {pad }}^{m}
\end{array}\right] }
\end{align*}
$$

Implementation I

- For gradient we did

$$
\begin{gathered}
\Delta \leftarrow \operatorname{mat}\left(\operatorname{vec}(\Delta)^{T} P_{\mathrm{pool}}^{m, i}\right) \\
\frac{\partial \xi_{i}}{\partial W^{m}}=\Delta \cdot \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \\
\Delta \leftarrow \operatorname{vec}\left(\left(W^{m}\right)^{T} \Delta\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m} \\
\Delta \leftarrow \Delta \odot I\left[Z^{m, i}\right]
\end{gathered}
$$

- Now for Jacobian we have similar settings but there are some differences

Implementation II

- We do not really store the Jacobian:

$$
\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}}=\left[\begin{array}{c}
\operatorname{vec}\left(\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T} \\
\vdots \\
\operatorname{vec}\left(\frac{\partial z_{L+1}^{L+1, i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T}
\end{array}\right]
$$

- Recall Jacobian is used for matrix-vector products

$$
\begin{equation*}
G^{S} \boldsymbol{v}=\frac{1}{C} \boldsymbol{v}+\frac{1}{|S|} \sum_{i \in S}\left(\left(J^{i}\right)^{T}\left(B^{i}\left(J^{i} v\right)\right)\right) \tag{3}
\end{equation*}
$$

Implementation III

- The form

$$
\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}}=\left[\begin{array}{c}
\operatorname{vec}\left(\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T} \\
\vdots \\
\operatorname{vec}\left(\frac{\partial z_{L_{L+1}}^{L+1, i}}{\partial S_{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T}
\end{array}\right]
$$

is like the product of two things

Implementation IV

- If we have

$$
\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}, \ldots, \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}, \text { and } \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)
$$

probably we can do the matrix-vector product without multiplying these two things out

- We will talk about this again later

Implementation V

- We already know how to obtain

$$
\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)
$$

so the remaining issue is on obtaining

$$
\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}, \ldots, \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}
$$

- Further we need to take all data (or data in the selected subset) into account
- In the end what we have is the following procedure

Implementation VI

- In the beginning we have

$$
\begin{equation*}
\Delta \in R^{d^{m+1} a^{m+1} b^{m+1} \times n_{L+1} \times I} \tag{5}
\end{equation*}
$$

This corresponds to
$\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot\left(\mathbb{1}_{n_{L+1}} \operatorname{vec}\left(\iota\left[Z^{m+1, i}\right]\right)^{T}\right), \forall i=1, \ldots, l$

Implementation VII

- We then calculate
$\Delta \leftarrow \operatorname{mat}\left(\left[\begin{array}{c}\left(P_{\text {pool }}^{m, 1}\right)^{T} \operatorname{vec}\left(\Delta_{:,, i, 1}\right) \\ \vdots \\ \left(P_{\text {pool }}^{m, l}\right)^{T} \operatorname{vec}\left(\Delta_{:,,, l}\right)\end{array}\right]\right)_{d^{m+1} \times a_{\text {conv }}^{m} b_{\text {conv }}^{m} n_{L+1} l}$
- Recall that the pooling matrices are different across instances

Implementation VIII

- The above operation corresponds to

$$
\begin{aligned}
& \frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
= & \left(\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot\left(\mathbb{1}_{n_{L+1}} \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}\right)\right) P_{\text {pool }}^{m, i}
\end{aligned}
$$

- Now we get

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\frac{\partial z_{1}^{L+1,1}}{\partial S^{m, 1}} & \ldots & \frac{\partial z_{n_{L+1}}^{L+1,1}}{\partial S^{m, 1}} & \ldots
\end{array}\right.} \\
& \in R^{d^{m+1} \times a_{\text {conv }}^{m} b_{\text {conv }}^{m} n_{L+1} l}
\end{aligned}
$$

Implementation IX

- For gradient, the next step is to calculate

$$
\frac{\partial \xi_{i}}{\partial W^{m}}=\cdots
$$

but here for Jacobian we have mentioned that we do not explicitly get

$$
\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}}
$$

- Therefore, the next operation is

$$
V \leftarrow \operatorname{vec}\left(\left(W^{m}\right)^{T} \Delta\right) \in R^{h h d^{m} a^{m} m b_{c o n}^{m} b_{\text {conv }}^{m} n_{L+1} / \times 1}
$$

Implementation X

- This is same as

$$
\operatorname{vec}\left(\left(W^{m}\right)^{T}\left[\begin{array}{lllll}
\frac{\partial z_{1}^{L+1,1}}{\partial S^{m, 1}} & \ldots & \frac{\partial z_{n_{L+1}}^{L+1,1}}{\partial S^{m, 1}} & \ldots & \frac{\partial z_{n_{L+1}}^{L+1, l}}{\partial S_{m, l}}
\end{array}\right]\right) .
$$

- Now V is a big vector like

$$
\left[\begin{array}{c}
\boldsymbol{v}_{1}^{1} \\
\vdots \\
\boldsymbol{v}_{n_{L+1}}^{1} \\
\vdots \\
\boldsymbol{v}_{n_{L+1}}^{\prime}
\end{array}\right]
$$

Implementation XI

Note that " v " here is not the vector in matrix-vector products. We happen to use the same symbol

- From (2), we then calculate

$$
\begin{gathered}
\left(v_{1}^{1}\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m} \\
\vdots \\
\left(v_{n_{L+1}}^{1}\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m} \\
\vdots \\
\left(v_{n_{L+1}}^{\prime}\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m}
\end{gathered}
$$

Implementation XII

- For each resulting vector, we convert it to

$$
\operatorname{mat}\left(\boldsymbol{v}^{\top} P_{\phi}^{m} P_{\mathrm{pad}}^{m}\right)_{d^{m} \times a^{m} b^{m}}
$$

This corresponds to

$$
\frac{\partial z_{1}^{L+1, i}}{\partial Z^{m, i}}, \ldots, \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial Z^{m, i}}, i=1, \ldots, I
$$

Implementation XIII

- Finally,
$\Delta \leftarrow \Delta \odot$

$$
\begin{equation*}
[\underbrace{l\left[Z^{m, 1}\right] \cdots l\left[Z^{m, 1}\right]}_{n_{L+1}} \cdots \underbrace{l\left[Z^{m, /}\right] \cdots l\left[Z^{m, l}\right]}_{n_{L+1}}] \tag{6}
\end{equation*}
$$

This is equivalent to
$\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m, i}\right)^{T}} \odot\left(\mathbb{1}_{n_{L+1}} \operatorname{vec}\left(I\left[Z^{m, i}\right]\right)^{T}\right), \forall i=1, \ldots, l$

Implementation XIV

- Note that in the beginning of the calculation, we assume that in (5)
$\frac{\partial z^{L+1, i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot\left(\mathbb{1}_{n_{L+1}} \operatorname{vec}\left(\iota\left[Z^{m+1, i}\right]\right)^{T}\right), \forall i=1, \ldots, l$ is available. The calculation here is to provide information for the previous layer

MATLAB Implementation I

$$
\begin{aligned}
\mathrm{dzdS}\{m\}= & \operatorname{vTP}(\text { model, net, m, num_data, } \\
& \text { dzdS\{m\}, 'pool_Jacobian') }
\end{aligned}
$$

dzdS\{m\} = reshape(dzdS\{m\}, model.ch_input(m+1), []);

V = model.weight\{m\}' * dzdS\{m\}; $\mathrm{dzdS}\{\mathrm{m}-1\}=\mathrm{vTP}($ model, net, m, num_data, V, 'phi_Jacobian');
\% vTP_pad

MATLAB Implementation II

dzdS\{m-1\} = reshape(dzdS\{m-1\}, model.ch_input(m), model.ht_pad(m), model.wd_pad(m), []);
p = model.wd_pad_added(m);
dzdS\{m-1\} $=$ dzdS\{m-1\}(:, p+1:p+model.ht_input(m p+1:p+model.wd_input(m), :);
dzdS\{m-1\} =
reshape(dzdS\{m-1\}, [], nL, num_data)
.* reshape(net. $\mathrm{Z}\{\mathrm{m}\}>0$, [], 1, num_data);

MATLAB Implementation III

- In the last line for doing (6), we do not need to repeat each $I\left[Z^{m, i}\right] n_{L+1}$ times. For .*, MATLAB does the expansion automatically

Discussion I

- For doing several CG steps, we should store

$$
\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}, \ldots, \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}, i=1, \ldots, I
$$

in (4).

- The reason is that it's used for all CG steps (Jacobian matrix remains the same)
- Recalculating them at each CG step is too expensive

Discussion II

- The memory cost is

$$
\begin{equation*}
I \times n_{L+1} \times\left(\sum_{m=1}^{L^{c}} d^{m+1} a_{\mathrm{conv}}^{m} b_{\mathrm{conv}}^{m}+\sum_{m=L^{c}+1}^{L} n_{m+1}\right) \tag{7}
\end{equation*}
$$

- It is proportional to
- Number of classes
- Number of data for the subsampled Hessian
- This memory cost is high
- Thus later we will consider a different approach to reduce the memory consumption

Outline

(1) Backward setting

- Jacobian evaluation
- Gauss-Newton Matrix-vector products
(2) Forward + backward settings
- R operator
- Gauss-Newton matrix-vector product

Complexity analysis

Gauss-Newton Matrix-Vector Products I

- We check

$$
G v
$$

though the situation of using G^{S} (i.e., a subset of data) is the same

- The Gauss-Newton matrix is

$$
G=\frac{1}{C} \mathcal{I}+\frac{1}{l} \sum_{i=1}^{I}\left[\begin{array}{c}
\left(J^{1, i}\right)^{T} \\
\vdots \\
\left(J^{L, i}\right)^{T}
\end{array}\right] B^{i}\left[\begin{array}{lll}
J^{1, i} & \ldots & J^{L, i}
\end{array}\right]
$$

Gauss-Newton Matrix-Vector Products II

- The Gauss-Newton matrix vector product is

Gv
$=\frac{1}{C} \boldsymbol{v}+\frac{1}{l} \sum_{i=1}^{l}\left[\begin{array}{c}\left(J^{1, i}\right)^{T} \\ \vdots \\ \left(J^{L, i}\right)^{T}\end{array}\right] B^{i}\left[\begin{array}{lll}J^{1, i} & \ldots & J^{L, i}\end{array}\right]\left[\begin{array}{c}\boldsymbol{v}^{1} \\ \vdots \\ \boldsymbol{v}^{L}\end{array}\right]$
$=\frac{1}{C} \boldsymbol{v}+\frac{1}{l} \sum_{i=1}^{l}\left[\begin{array}{c}\left(J^{1, i}\right)^{T} \\ \vdots \\ \left(J^{L, i}\right)^{T}\end{array}\right]\left(B^{i} \sum_{m=1}^{L} J^{m, i} \boldsymbol{v}^{m}\right)$,

Gauss-Newton Matrix-Vector Products III

where

$$
\boldsymbol{v}=\left[\begin{array}{c}
\boldsymbol{v}^{1} \\
\vdots \\
\boldsymbol{v}^{L}
\end{array}\right]
$$

- Each $v^{m}, m=1, \ldots, L$ has the same length as the number of variables (including bias) at the m th layer.

Jacobian-vector Product I

- For the convolutional layers,

$$
J^{m, i} \mathbf{v}^{m}
$$

- By this formulation, we need

Jacobian-vector Product II

- a for loop to generate n_{L+1} vectors

$$
\begin{gathered}
\operatorname{vec}\left(\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right]\right)^{T} \\
\vdots \\
\operatorname{vec}\left(\frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right]\right)^{T}
\end{gathered}
$$

- the product between the above matrix and a vector \boldsymbol{v}^{m}

Jacobian-vector Product III

- Is there a way to avoid a for loop?
- For a language like MATLAB/Octave, we hope to avoid for loops
- Also we hope the code can be simpler and shorter
- We use the following property

$$
\operatorname{vec}(A B)^{T} \operatorname{vec}(C)=\operatorname{vec}(A)^{T} \operatorname{vec}\left(C B^{T}\right)
$$

Jacobian-vector Product IV

- The first element is

$$
\left.\begin{array}{rl}
& \operatorname{vec}(\underbrace{\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}}_{A} \underbrace{\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right.}_{B} \mathbb{1}_{a_{\mathrm{conv}}^{m} b_{\mathrm{conv}}^{m}}]
\end{array}\right)^{T} \underbrace{\boldsymbol{v}^{m}}_{\operatorname{vec}(C)} .
$$

Jacobian-vector Product V

- If all elements are considered together

$$
\begin{align*}
& J^{m, i} \boldsymbol{v}^{m} \\
= & \frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \times \\
& \operatorname{vec}\left(\operatorname{mat}\left(\boldsymbol{v}^{m}\right)_{d^{m+1} \times\left(h^{m} h^{m} d^{m}+1\right)}\left[\begin{array}{c}
\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right) \\
\mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}^{T}
\end{array}\right]\right) . \tag{9}
\end{align*}
$$

This involves

- One matrix-matrix product
- One matrix-vector product

Transposed Jacobian-vector Products I

- After deriving (9), from (8), we sum results of all layers

$$
\sum_{m=1}^{L} J^{m, i} \boldsymbol{v}^{m}
$$

- Next we calculate

$$
\begin{equation*}
\boldsymbol{q}^{i}=B^{i}\left(\sum_{m=1}^{L} J^{m, i} \boldsymbol{v}^{m}\right) \tag{10}
\end{equation*}
$$

- This is usually easy

Transposed Jacobian-vector Products II

- We mentioned earlier that if the squared loss is used

$$
B^{i}=\left[\begin{array}{lll}
2 & & \\
& \vdots & \\
& & 2
\end{array}\right]
$$

is a diagonal matrix

Transposed Jacobian-vector Products III

- Finally, we calculate

$$
\begin{aligned}
& \left(J^{m, i}\right)^{T} \boldsymbol{q}^{i} \\
= & {\left[\operatorname{vec}\left(\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right]\right) \cdots\right.} \\
& \left.\operatorname{vec}\left(\frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right]\right)\right] \boldsymbol{q}^{i}
\end{aligned}
$$

Transposed Jacobian-vector Products IV

$$
\begin{aligned}
& =\sum_{j=1}^{n_{L+1}} q_{j}^{i} \operatorname{vec}\left(\frac{\partial z_{j}^{L+1, i}}{\partial S^{m, i}}\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right]\right) \\
& =\operatorname{vec}\left(\sum_{j=1}^{n_{L+1}} q_{j}^{i}\left(\frac{\partial z_{j}^{L+1, i}}{\partial S^{m, i}}\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right]\right)\right) \\
& =\operatorname{vec}\left(\left(\sum_{j=1}^{n_{L+1}} q_{j}^{i} \frac{\partial z_{j}^{L+1, i}}{\partial S^{m, i}}\right)\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right]\right)
\end{aligned}
$$

Transposed Jacobian-vector Products V

$$
\begin{align*}
= & \operatorname{vec}\left(\operatorname{mat}\left(\left(\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}}\right)^{T} \boldsymbol{q}^{i}\right)_{d^{m+1} \times a_{\text {comv }}^{m} b_{\text {conv }}^{m}} \times\right. \\
& {\left.\left[\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \mathbb{1}_{a_{\text {comv }}^{m} b_{c o n v}^{m}}\right]\right) . } \tag{11}
\end{align*}
$$

This needs a matrix-vector product and then a matrix-matrix product

Fully-connected Layers I

- Similar to the results of the convolutional layers, for the fully-connected layers we have

$$
\begin{gathered}
J^{m, i} \boldsymbol{v}^{m}=\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{s}^{m, i}\right)^{T}} \operatorname{mat}\left(\boldsymbol{v}^{m}\right)_{n_{m+1} \times\left(n_{m}+1\right)}\left[\begin{array}{c}
\boldsymbol{z}^{m, i} \\
\mathbb{1}_{1}
\end{array}\right] . \\
\left(J^{m, i}\right)^{T} \boldsymbol{q}^{i}=\operatorname{vec}\left(\left(\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{s}^{m, i}\right)^{T}}\right)^{T} \boldsymbol{q}^{i}\left[\left(\boldsymbol{z}^{m, i}\right)^{T} \mathbb{1}_{1}\right]\right) .
\end{gathered}
$$

Implementation

- As before, we must handle all instances together
- We discuss only

$$
\left[\begin{array}{c}
\sum_{m=1}^{L} J^{m, 1} \boldsymbol{v}^{m} \\
\vdots \\
\sum_{m=1}^{L} J^{m, l} \boldsymbol{v}^{m}
\end{array}\right] \in R^{n_{L+1} 1 \times 1}
$$

- Following earlier derivation

Implementation II

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{c}
J^{m, 1} \boldsymbol{v}^{m} \\
\vdots \\
J^{m, /} \boldsymbol{v}^{m}
\end{array}\right]} & \left.=\left[\begin{array}{c}
\frac{\partial \boldsymbol{z}^{L+1,1}}{\partial \operatorname{vec}\left(S^{m, 1}\right)^{T}} \operatorname{vec}\left(\operatorname{mat}\left(\boldsymbol{v}^{m}\right)\right. \\
\vdots \\
\vdots \\
\frac{\partial \boldsymbol{z}^{L+1, l}}{\partial \operatorname{vec}\left(S^{m, l}\right)^{T}} \operatorname{vec}\left(\operatorname{pad}\left(Z^{m, 1}\right)\right) \\
\mathbb{1}_{a_{\mathrm{conv}}^{m} b_{\mathrm{conv}}^{m}}^{T}
\end{array}\right]\right) \\
\left.\operatorname{mat}\left(\boldsymbol{v}^{m}\right)\left[\begin{array}{c}
\phi\left(\operatorname{pad}\left(Z^{m, l}\right)\right) \\
\mathbb{1}_{a_{\mathrm{conv}}^{m}}^{T} b_{\mathrm{conv}}^{m}
\end{array}\right]\right)
\end{array}\right] .\right]
$$

Implementation III

- where

$$
\operatorname{mat}\left(\boldsymbol{v}^{m}\right) \in R^{d^{m+1} \times\left(h^{m} h^{m} d^{m}+1\right)}
$$

and

$$
\boldsymbol{p}^{m, i}=\operatorname{vec}\left(\operatorname{mat}\left(\boldsymbol{v}^{m}\right)\left[\begin{array}{c}
\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right) \tag{12}\\
\mathbb{a}_{a_{\text {conv }}^{T} b_{\text {conv }}^{m}}^{T}
\end{array}\right]\right) .
$$

Implementation IV

- To get $\boldsymbol{p}^{m, i}$, a matrix-matrix product is needed. For all $i=1, \ldots, /$ the calculation can be done by a matrix-matrix product

$$
\begin{aligned}
& \operatorname{mat}\left(\boldsymbol{v}^{m}\right)\left[\begin{array}{ccc}
\phi\left(\operatorname{pad}\left(Z^{m, 1}\right)\right) & \cdots & \phi\left(\operatorname{pad}\left(Z^{m, l}\right)\right) \\
\mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}^{T} & \cdots & \mathbb{1}_{a_{\text {conv }}^{m} v_{\text {conv }}^{m}}^{T}
\end{array}\right] \\
& \in R^{d^{m+1} \times a_{\text {conv }}^{m} b_{\text {conv }} l}
\end{aligned}
$$

Implementation

- To get

$$
\left[\begin{array}{c}
\frac{\partial \boldsymbol{z}^{L+1,1}}{\partial \operatorname{vec}\left(S^{m, 1}\right)^{T}} \boldsymbol{p}^{m, 1} \\
\vdots \\
\frac{\partial \boldsymbol{z}^{L+1, l}}{\partial \operatorname{vec}\left(S^{m, l}\right)^{T}} \boldsymbol{p}^{m, l}
\end{array}\right],
$$

we need / matrix-vector products

- There is no good way to transform it to matrix-matrix operations

Implementation VI

- To avoid a for loop over all data, here we implement the matrix-vector product

$$
\begin{equation*}
J^{m, i} \boldsymbol{v}^{m}=\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \boldsymbol{p}^{m, i} \tag{13}
\end{equation*}
$$

by a summation of all rows of the following matrix

$$
\begin{align*}
& {\left[\frac{\partial z_{1}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)} \cdots \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)}\right]_{d^{m+1} a_{\text {conv }}^{m} b_{\text {conv }}^{m} \times n_{L+1}}} \\
& {\left[\boldsymbol{p}^{m, i} \cdots \boldsymbol{p}^{m, i}\right]_{d^{m+1} a_{\text {conv }}^{m} b_{\text {conv }}^{m} \times n_{L+1}} .}
\end{align*}
$$

Implementation VII

- For example, summing up all elements of the first column is the inner product between the first row of

$$
\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \text { and } \boldsymbol{p}^{m, i}
$$

- Then all the I matrix-vector products

$$
J^{m, i} \boldsymbol{v}^{m}=\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \boldsymbol{p}^{m, i}, \quad i=1, \ldots, l
$$

Implementation VIII

can be done in one line by

$$
\begin{aligned}
& {\left[\cdots \frac{\partial z_{1}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)} \cdots \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial \operatorname{vec}\left(S^{m, i}\right)} \cdots\right] \odot} \\
& {\left[\cdots \boldsymbol{p}^{m, i} \cdots \boldsymbol{p}^{m, i} \cdots\right]}
\end{aligned}
$$

- The code (convolutional layers) is like

Implementation IX

$$
\begin{aligned}
& \text { for } m=L C:-1: 1 \\
& \text { var_range }=\text { var_ptr }(m): \text { var_ptr }(m+1)-1 \\
& a b=\text { model.ht_conv }(m) * \text { model.wd_conv }(m) ; \\
& d=\text { model.ch_input }(m+1) ;
\end{aligned}
$$

$$
\mathrm{p}=\text { reshape(v(var_range), d, []) * }
$$

$$
\text { [net.phiZ\{m\}; ones(1, ab*num_data)]; }
$$

$$
p=\operatorname{sum}(r e s h a p e(n e t . d z d S\{m\}, d * a b, n L,
$$

[]) .*
reshape(p, d*ab, 1, []),1);
$\mathrm{Jv}=\mathrm{Jv}+\mathrm{p}(:)$;

Implementation X

end

- Note that
sum (:,1);
sums up all rows
- For $\boldsymbol{p}^{m, i}$ we do not duplicate it n_{L+1} times. Instead, for .*, MATLAB does the expansion automatically

Outline

(1) Backward setting

- Jacobian evaluation
- Gauss-Newton Matrix-vector products
(2) Forward + backward settings
- R operator
- Gauss-Newton matrix-vector product Complexity analysis

Outline

(1) Backward setting

- Jacobian evaluation
- Gauss-Newton Matrix-vector products
(2) Forward + backward settings
- R operator
- Gauss-Newton matrix-vector product

Complexity analysis

Reverse versus Forward Autodiff I

- We mentioned before that two types of autodiff are forward and reverse modes
- For the Jacobian evaluation, at layer m,

$$
J^{m, i}=\left[\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}} \frac{\partial \boldsymbol{z}^{L+1, i}}{\partial\left(\boldsymbol{b}^{m}\right)^{T}}\right],
$$

naturally we follow the gradient calculation to use the reverse mode

- But this may not be a good decision

Reverse versus Forward Autodiff II

- In particular, we must store $J^{m, i}, \forall i$, or more precisely,

$$
\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}, \ldots, \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}, i=1, \ldots, l
$$

where the memory cost is

$$
I \times n_{L+1} \times\left(\sum_{m=1}^{L^{c}} d^{m+1} a_{\text {conv }}^{m} b_{\text {conv }}^{m}+\sum_{m=L^{c}+1}^{L} n_{m+1}\right)
$$

This memory cost is higher than other stored information

Reverse versus Forward Autodiff III

- For example, the $Z^{m, i}, \forall i$ stored from the forward process takes

$$
I \times\left(\sum_{m=1}^{L^{c}} d^{m} a^{m} b^{m}+\sum_{m=L^{c}+1}^{L+1} n_{m}\right)
$$

which is independent to the number of classes.

- We will show a solution to address this memory difficulty
- First, for the Jacobian-vector product, we will use the forward mode of automatic differentiation

Reverse versus Forward Autodiff IV

- Recall earlier we said that by the forward mode, the Jacobian-vector product can be done in just one pass

R Operator I

- Consider $g(\boldsymbol{\theta}) \in R^{k \times 1}$. Following Pearlmutter (1994), we define

$$
\mathcal{R}_{\boldsymbol{v}}\{g(\boldsymbol{\theta})\} \equiv \frac{\partial g(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{T}} \boldsymbol{v}=\left[\begin{array}{c}
\nabla g_{1}(\boldsymbol{\theta})^{T} \boldsymbol{v} \tag{14}\\
\vdots \\
\nabla g_{k}(\boldsymbol{\theta})^{T} \boldsymbol{v}
\end{array}\right] .
$$

- Note that

$$
\left[\begin{array}{c}
\nabla g_{1}(\boldsymbol{\theta})^{T} \\
\vdots \\
\nabla g_{k}(\boldsymbol{\theta})^{T}
\end{array}\right]
$$

is the Jacobian of $g(\boldsymbol{\theta})$

R Operator II

- This definition can be extended to a matrix $M(\boldsymbol{\theta}) \in R^{k \times t}$ by
$\mathcal{R}_{\boldsymbol{v}}\{M(\boldsymbol{\theta})\} \equiv \operatorname{mat}\left(\mathcal{R}_{\boldsymbol{v}}\{\operatorname{vec}(M(\boldsymbol{\theta}))\}\right)_{k \times t}$
$=\operatorname{mat}\left(\frac{\partial \mathrm{vec}(M(\boldsymbol{\theta}))}{\partial \boldsymbol{\theta}^{T}} \boldsymbol{v}\right)_{k \times t}=\left[\begin{array}{ccc}\nabla M_{11}^{T} v & \cdots & \nabla M_{1 t}^{T} v \\ \vdots & \ddots & \vdots \\ \nabla M_{k 1}^{T} v & \cdots & \nabla M_{k t}^{T} v\end{array}\right]$
- Clearly,

$$
\mathcal{R}_{\boldsymbol{v}}\{M(\boldsymbol{\theta})\}=\left(\mathcal{R}_{\boldsymbol{v}}\left\{M(\boldsymbol{\theta})^{T}\right\}\right)^{T}
$$

R Operator III

- If $h(\cdot)$ is a scalar function, we let

$$
h(M(\boldsymbol{\theta}))=\left[\begin{array}{ccc}
h\left(M_{11}\right) & \cdots & h\left(M_{1 t}\right) \\
\vdots & \ddots & \vdots \\
h\left(M_{k 1}\right) & \cdots & h\left(M_{k t}\right)
\end{array}\right]
$$

and

$$
h^{\prime}(M(\theta))=\left[\begin{array}{ccc}
h^{\prime}\left(M_{11}\right) & \cdots & h^{\prime}\left(M_{1 t}\right) \\
\vdots & \ddots & \vdots \\
h^{\prime}\left(M_{k 1}\right) & \cdots & h^{\prime}\left(M_{k t}\right)
\end{array}\right]
$$

R Operator IV

- Because

$$
\nabla\left(h\left(M_{i j}(\boldsymbol{\theta})\right)\right)^{T} \boldsymbol{v}=h^{\prime}\left(M_{i j}\right) \nabla\left(M_{i j}\right)^{T} \boldsymbol{v}
$$

we have

$$
\begin{aligned}
\mathcal{R}_{\boldsymbol{v}}\{h(M(\boldsymbol{\theta}))\} & =\left[\begin{array}{ccc}
\nabla h\left(M_{11}\right)^{T} \boldsymbol{v} & \cdots & \nabla h\left(M_{1 t}\right)^{T} \boldsymbol{v} \\
\vdots & \ddots & \vdots \\
\nabla h\left(M_{k 1}\right)^{T} \boldsymbol{v} & \cdots & \nabla h\left(M_{k t}\right)^{T} \boldsymbol{v}
\end{array}\right] \\
& =h^{\prime}(M(\boldsymbol{\theta})) \odot \mathcal{R}_{\boldsymbol{v}}\{M(\boldsymbol{\theta})\},
\end{aligned}
$$

R Operator V

where \odot stands for the Hadamard product (i.e., component-wise product).

- If $M(\boldsymbol{\theta})$ and $T(\boldsymbol{\theta})$ have the same size,

$$
\mathcal{R}_{\boldsymbol{v}}\{M(\boldsymbol{\theta})+T(\boldsymbol{\theta})\}=\mathcal{R}_{\boldsymbol{v}}\{M(\boldsymbol{\theta})\}+\mathcal{R}_{\boldsymbol{v}}\{T(\boldsymbol{\theta})\}
$$

(17)

- Lastly, we have
$\mathcal{R}_{\boldsymbol{v}}\{U(\boldsymbol{\theta}) M(\boldsymbol{\theta})\}=\mathcal{R}_{\boldsymbol{v}}\{U(\boldsymbol{\theta})\} M(\boldsymbol{\theta})+U(\boldsymbol{\theta}) \mathcal{R}_{\boldsymbol{v}}\{M(\boldsymbol{\theta})\}$
(18)

R Operator VI

Proof: Note that

$$
(\mathcal{R}\{U(\boldsymbol{\theta}) M(\boldsymbol{\theta})\})_{i j}=\nabla\left((U(\boldsymbol{\theta}) M(\boldsymbol{\theta}))_{i j}\right)^{T} \boldsymbol{v}
$$

With

$$
(U(\boldsymbol{\theta}) M(\boldsymbol{\theta}))_{i j}=\sum_{p=1}^{m} U_{i p} M_{p j}
$$

we have both $U_{i p} \in R^{1}$ and $M_{p j} \in R^{1}$. Then,
$\nabla\left(U_{i p} M_{p j}\right)^{T} v=\left(\left(\nabla U_{i p}\right)^{T} v\right) M_{p j}+U_{i p}\left(\left(\nabla M_{p j}\right)^{T} v\right)$.

R Operator VII

The summation

$$
\sum_{p=1}^{m}\left(\left(\nabla U_{i p}\right)^{T} v\right) M_{p j}
$$

leads to the (i, j) component of

$$
\mathcal{R}_{\boldsymbol{v}}\{U(\boldsymbol{\theta})\} M(\boldsymbol{\theta})
$$

Thus we have (18)

- For simplicity, subsequently we use $\mathcal{R}\{g(\boldsymbol{\theta})\}$ to denote $\mathcal{R}_{\boldsymbol{v}}\{g(\boldsymbol{\theta})\}$

R Operator for $J^{i} v I$

- We have

$$
J^{i} \boldsymbol{v}=\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \boldsymbol{\theta}^{T}} \boldsymbol{v}=\mathcal{R}\left\{\boldsymbol{z}^{L+1, i}\right\}
$$

- We consider the following forward operations by assuming that

$$
\mathcal{R}\left\{Z^{m, i}\right\}
$$

is available from the previous layer

R Operator for $J^{i} v$ II

- From (18), we have

$$
\begin{aligned}
& \mathcal{R}\left\{\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)\right\} \\
= & \mathcal{R}\left\{\operatorname{mat}\left(P_{\phi}^{m, i} P_{\mathrm{pad}}^{m, i} \operatorname{vec}\left(Z^{m, i}\right)\right)\right\} \\
= & \operatorname{mat}\left(\mathcal{R}\left\{P_{\phi}^{m, i} P_{\mathrm{pad}}^{m, i} \operatorname{vec}\left(Z^{m, i}\right)\right\}\right) \\
= & \operatorname{mat}\left(P_{\phi}^{m, i} P_{\mathrm{pad}}^{m, i} \mathcal{R}\left\{\operatorname{vec}\left(Z^{m, i}\right)\right\}\right)_{h^{m} h^{m} d^{m} \times a_{\text {conv }}^{m} b_{\text {conv }}^{m}}
\end{aligned}
$$

R Operator for $J^{i} v$ III

- From (17) and (18), we have

$$
\begin{aligned}
& \mathcal{R}\left\{S^{m, i}\right\} \\
& =\mathcal{R}\left\{W^{m} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)+\boldsymbol{b}^{m} \mathbb{1}_{a_{c o m}^{m} b_{c o r v}^{m}}^{T}\right\} \\
& =\mathcal{R}\left\{W^{m} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)\right\}+\mathcal{R}\left\{\boldsymbol{b}^{m} \mathbb{1}_{\mathrm{a}^{m_{00 v}} b_{c o v i v}^{m}}^{T}\right\} \\
& =\mathcal{R}\left\{W^{m}\right\} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)+W^{m} \mathcal{R}\left\{\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)\right\}+ \\
& \mathcal{R}\left\{\boldsymbol{b}^{m}\right\} \mathbb{1}_{a_{m o n}^{m} b_{c o n v}^{m}}^{T} \\
& =V_{W}^{m} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)+W^{m} \mathcal{R}\left\{\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)\right\}+ \\
& \boldsymbol{v}_{b}^{m} \mathbb{1}_{a_{c o n}^{m} b_{c o n v}^{m}}^{T},
\end{aligned}
$$

R Operator for $J^{i} v \mathrm{IV}$

where we have

$$
\begin{aligned}
\mathcal{R}\left\{W^{m}\right\} & =V_{W}^{m} \\
\mathcal{R}\left\{\boldsymbol{b}^{m}\right\} & =\boldsymbol{v}_{b}^{m}
\end{aligned}
$$

- Note that

$$
\boldsymbol{v}=\left[\begin{array}{c}
\boldsymbol{v}^{1} \\
\vdots \\
\boldsymbol{v}^{L}
\end{array}\right]
$$

and each $v^{m}, m=1, \ldots, L$ has the same length as the number of variables (including bias) at the m th layer.

R Operator for $J^{i} v V$

- We further split \boldsymbol{v}^{m} to V_{W}^{m} (a matrix form) and \boldsymbol{v}_{b}^{m}
- From (16), we have

$$
\begin{equation*}
\mathcal{R}\left\{\sigma\left(S^{m, i}\right)\right\}=\sigma^{\prime}\left(S^{m, i}\right) \odot \mathcal{R}\left\{S^{m, i}\right\} \tag{19}
\end{equation*}
$$

- From (18), we have

$$
\begin{aligned}
& \mathcal{R}\left\{Z^{m+1, i}\right\} \\
= & \mathcal{R}\left\{\operatorname{mat}\left(P_{\text {pool }}^{m, i} \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)\right)\right\} \\
= & \operatorname{mat}\left(\mathcal{R}\left\{P_{\text {pool }}^{m, i} \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)\right\}\right) \\
= & \operatorname{mat}\left(P_{\text {pool }}^{m, i} \mathcal{R}\left\{\operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)\right\}\right)_{d^{m+1} \times a^{m+1} b^{m+1}} \Xi_{\Xi}
\end{aligned}
$$

R Operator for $J^{i} v \mathrm{VI}$

- We can continue this process until we get

$$
J^{i} \boldsymbol{v}=\mathcal{R}\left\{\boldsymbol{z}^{L+1, i}\right\} .
$$

- Clearly, we do not need to store

$$
\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}, \ldots, \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}
$$

as before, so the memory issue is solved

- But how about

$$
\left(J^{i}\right)^{T}(\cdot) ?
$$

We will explain later that they are not needed

Outline

(1) Backward setting

- Jacobian evaluation
- Gauss-Newton Matrix-vector products
(2) Forward + backward settings
- R operator
- Gauss-Newton matrix-vector product Complexity analysis

Gauss-Newton Matrix-vector Product I

- From the above discussion, we have known how to calculate

$$
J^{i} v
$$

- Calculate

$$
B^{i}\left(J^{i} v\right)
$$

is known to be easy

Gauss-Newton Matrix-vector Product II

- Now for

$$
\left(J^{i}\right)^{T}\left(B^{i} J^{i} v\right)
$$

if we define

$$
\boldsymbol{u}=B^{i} J^{i} \boldsymbol{v}
$$

then

$$
\left(J^{i}\right)^{T} \boldsymbol{u}=\left(\frac{\partial \boldsymbol{z}^{L+1, i}}{\partial \boldsymbol{\theta}^{T}}\right)^{T} \boldsymbol{u}
$$

- But earlier the gradient calculation is

Gauss-Newton Matrix-vector Product III

- Thus the same backward procedure can be used
- All we need is to replace

$$
\frac{\partial \xi_{i}}{\partial \boldsymbol{z}^{L+1, i}}
$$

with

u

- Therefore, we do not need to explicitly derive J^{i} at all.

Gauss-Newton Matrix-vector Product IV

- Thus for $\left(J^{i}\right)^{T} \boldsymbol{u}$, there is no need to store

$$
\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}, \ldots, \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}
$$

Outline

(1) Backward setting

- Jacobian evaluation
- Gauss-Newton Matrix-vector products
(2) Forward + backward settings
- R operator
- Gauss-Newton matrix-vector product
(3) Complexity analysis
\qquad

Complexity Analysis I

- We have known from past slides that matrix-matrix products are the bottleneck (though in our cases some slow MATLAB functions are also bottlenecks in practice)
- For simplicity, in our analysis we just count the number of matrix-matrix products without worrying about their sizes

Complexity Analysis II

- For approaches solely by backward settings, if

$$
\frac{\partial z_{1}^{L+1, i}}{\partial S^{m, i}}, \ldots, \frac{\partial z_{n_{L+1}}^{L+1, i}}{\partial S^{m, i}}
$$

are stored, then the complexity of a Newton iteration is proportional to

$$
\left(n_{L+1}+1\right)+\# C G \times 2,
$$

where \# CG is the number of CG steps in that iteration

Complexity Analysis III

- If not, then

$$
\# \mathrm{CG} \times\left(\left(n_{L+1}+1\right)+2\right)
$$

Note that here we assume that $Z^{m, i}$ are not stored either, so at each CG step, a forward process is needed

- Therefore, " 1 " of " $n_{L+1}+1$ " comes from one product in the forward process. In the backward process we need n_{L+1} products

$$
\operatorname{vec}\left(\left(W^{m}\right)^{T}\left[\begin{array}{llll}
\frac{\partial z_{1}^{L+1,1}}{\partial S^{m, 1}} & \ldots & \frac{\partial z_{n_{L+1}^{L+1}}^{L+1,1}}{\partial S_{m, 1}^{m, l}} & \ldots
\end{array} \frac{\partial z_{n_{L+1}}^{L+1, l}}{\partial S^{m, l}, \underline{=}}\right]\right)
$$

Complexity Analysis IV

- The situation is slightly different from the Gradient calculation, which needs " 3 " products (one in forward and two in backward).
The reason is that now we do not need

$$
\frac{\partial \xi_{i}}{\partial W^{m}}=\Delta \cdot \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}
$$

- For "\# CG $\times 2$ ", the " 2 " is from (9) and (11)

Complexity Analysis V

- If using R operators, then

$$
\# \mathrm{CG} \times(3+2)
$$

products are needed, where " 3 " are from the forward process

$$
W^{m} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)
$$

and

$$
V_{W}^{m} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right), W^{m} \mathcal{R}\left\{\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)\right\}
$$

and " 2 " are from the backward process

Complexity Analysis VI

- Clearly, under the same memory consumption, the one using R operators is much more efficient

Discussion I

- At this moment in the Python code we are not using the forward mode for $J v$
- It was not available before
- However, since version 2.10 released in January 2020, this functionality is provided: https://www.tensorflow.org/api_docs/ python/tf/autodiff/ForwardAccumulator
- It will be interesting to do the implementation and make a comparison

