@ We have discussed sub-sampled Newton method to
address the memory issue

@ Another technique to address the memory difficulty
will be discussed later

@ Now we discuss several other considerations to make
Newton methods practical

Chih-Jen Lin (National Taiwan Univ.) 1/12

-
Levenberg-Marquardt Method |

@ Besides backtracking line search, in optimization
another way to adjust the direction is the
Levenberg-Marquardt method (Levenberg, 1944;
Marquardt, 1963)

@ It modifies the linear system to
(G° + \I)d = —V£(6)

@ The value X is decided by how good the function
reduction is.

o |t is updated by the following settings.

Chih-Jen Lin (National Taiwan Univ.) 2/12

-
Levenberg-Marquardt Method Il

@ If @ + d is the next iterate after line search, we
define

_ f(O+d)—f(0)
g VF(0)Td +1d"G5d

as the ratio of

actual function reduction

predicted reduction

Chih-Jen Lin (National Taiwan Univ.) 3/12

-
Levenberg-Marquardt Method Il

@ By using p, the parameter A,y for the next
iteration is decided by

Axdrop p > pupper;

Anext = § A Plower < P < Pupper;
A X boost otherwise,

where
drop < 1, boost > 1

are given constants.
@ In our code you can see

4/12

-
Levenberg-Marquardt Method IV

param.drop = 2/3;
param.boost = 3/2;

and
Pupper = 0.75, plower = 0.25

o If the function-value reduction is not satisfactory, A
is enlarged and the resulting direction is closer to
the negative gradient.

@ In optimization practice, if backtracking line search

has been applied, usually there is no need to apply
this LM method

Chih-Jen Lin (National Taiwan Univ.) 5/12

-
Levenberg-Marquardt Method V

@ However, some past works (e.g., Martens, 2010;
Wang et al., 2018) on fully-connected networks
seem to show that applying both is useful

@ The use of LM in training NN is still an issue to be
investigated

6/12

N
Function and Gradient Evaluation |

@ Recall in gradient evaluation the following main
steps are conducted:

A < mat(vec(A)TP™!)

pool

851' _ mi\\ T
A« vec (W™TA) PrPR,

A+ AGI[Z™]

Chih-Jen Lin (National Taiwan Univ.) 7/12

N
Function and Gradient Evaluation |l

e Clearly we must store Z;, or even ¢(pad(Z™'),Vi
after the forward process.

@ This is fine for stochastic gradient as we use a small
batch of data

@ However, for Newton we need the full gradient so
we can check the sufficient decrease condition

@ The memory cost is then
o # total data

@ This is not feasible

8/12

N
Function and Gradient Evaluation llI

@ Fortunately we can calculate the gradient by the
sum of sub-gradients

of 1. 1<~
own — VT g)
of 1. 1<~ 06
957~ T e 2)

@ Thus we can split the index set {1,...,/} of data
to, for example, R equal-sized subsets Sy, ..., Sk

Chih-Jen Lin (National Taiwan Univ.) 9/12

N
Function and Gradient Evaluation |V

@ We sequentially calculate the result corresponding
to each subset and accumulate them for the final
output.

@ For example, to have Z™ needed in the backward
process for calculating the gradient, we must store
them after the forward process for function
evaluation.

@ By using a subset, only Z™' with i in this subset are
stored, so the memory usage can be dramatically
reduced.

Chih-Jen Lin (National Taiwan Univ.) 10/12

]
The Overall Procedure |

@ See the Newton method code at
https://github.com/cjlinl/simpleNN/blob/
master/MATLAB/opt/newton.m

Chih-Jen Lin (National Taiwan Univ.) 11/12

https://github.com/cjlin1/simpleNN/blob/master/MATLAB/opt/newton.m
https://github.com/cjlin1/simpleNN/blob/master/MATLAB/opt/newton.m

R
Discussion |

@ We have known that at each iteration

G® ——I+—Z(J) B J

|S‘ ieS
is considered
@ The remaining issues are
e How to calculate
JVies

e How to calculate

()" (B'(J'v))

Chih-Jen Lin (National Taiwan Univ.) 12/12

