- We have discussed sub-sampled Newton method to address the memory issue
- Another technique to address the memory difficulty will be discussed later
- Now we discuss several other considerations to make Newton methods practical

Levenberg-Marquardt Method I

- Besides backtracking line search, in optimization another way to adjust the direction is the Levenberg-Marquardt method (Levenberg, 1944; Marquardt, 1963)
- It modifies the linear system to

$$
\left(G^{S}+\lambda \mathcal{I}\right) \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})
$$

- The value λ is decided by how good the function reduction is.
- It is updated by the following settings.

Levenberg-Marquardt Method II

- If $\boldsymbol{\theta}+\boldsymbol{d}$ is the next iterate after line search, we define

$$
\rho=\frac{f(\boldsymbol{\theta}+\boldsymbol{d})-f(\boldsymbol{\theta})}{\nabla f(\boldsymbol{\theta})^{T} \boldsymbol{d}+\frac{1}{2} \boldsymbol{d}^{T} G^{S} \boldsymbol{d}}
$$

as the ratio of

actual function reduction

 predicted reduction
Levenberg-Marquardt Method III

- By using ρ, the parameter $\lambda_{\text {next }}$ for the next iteration is decided by

$$
\lambda_{\text {next }}= \begin{cases}\lambda \times \text { drop } & \rho>\rho_{\text {upper }} \\ \lambda & \rho_{\text {lower }} \leq \rho \leq \rho_{\text {upper }}, \\ \lambda \times \text { boost } & \text { otherwise }\end{cases}
$$

where

$$
\text { drop }<1 \text {, boost }>1
$$

are given constants.

- In our code you can see

Levenberg-Marquardt Method IV

param.drop $=2 / 3$;
param.boost = 3/2;
and

$$
\rho_{\text {upper }}=0.75, \rho_{\text {lower }}=0.25
$$

- If the function-value reduction is not satisfactory, λ is enlarged and the resulting direction is closer to the negative gradient.
- In optimization practice, if backtracking line search has been applied, usually there is no need to apply this LM method

Levenberg-Marquardt Method V

- However, some past works (e.g., Martens, 2010; Wang et al., 2018) on fully-connected networks seem to show that applying both is useful
- The use of LM in training NN is still an issue to be investigated

Function and Gradient Evaluation I

- Recall in gradient evaluation the following main steps are conducted:

$$
\begin{gathered}
\Delta \leftarrow \operatorname{mat}\left(\operatorname{vec}(\Delta)^{T} P_{\mathrm{pool}}^{m, i}\right) \\
\frac{\partial \xi_{i}}{\partial W^{m}}=\Delta \cdot \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \\
\Delta \leftarrow \operatorname{vec}\left(\left(W^{m}\right)^{T} \Delta\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m} \\
\Delta \leftarrow \Delta \odot I\left[Z^{m, i}\right]
\end{gathered}
$$

Function and Gradient Evaluation II

- Clearly we must store Z_{i}, or even $\phi\left(\operatorname{pad}\left(Z^{m, i}\right), \forall i\right.$ after the forward process.
- This is fine for stochastic gradient as we use a small batch of data
- However, for Newton we need the full gradient so we can check the sufficient decrease condition
- The memory cost is then
$\propto \#$ total data
- This is not feasible

Function and Gradient Evaluation III

- Fortunately we can calculate the gradient by the sum of sub-gradients

$$
\begin{align*}
\frac{\partial f}{\partial W^{m}} & =\frac{1}{C} W^{m}+\frac{1}{l} \sum_{i=1}^{l} \frac{\partial \xi_{i}}{\partial W^{m}} \tag{1}\\
\frac{\partial f}{\partial \boldsymbol{b}^{m}} & =\frac{1}{C} \boldsymbol{b}^{m}+\frac{1}{l} \sum_{i=1}^{l} \frac{\partial \xi_{i}}{\partial \boldsymbol{b}^{m}} \tag{2}
\end{align*}
$$

- Thus we can split the index set $\{1, \ldots, l\}$ of data to, for example, R equal-sized subsets S_{1}, \ldots, S_{R}

Function and Gradient Evaluation IV

- We sequentially calculate the result corresponding to each subset and accumulate them for the final output.
- For example, to have $Z^{m, i}$ needed in the backward process for calculating the gradient, we must store them after the forward process for function evaluation.
- By using a subset, only $Z^{m, i}$ with i in this subset are stored, so the memory usage can be dramatically reduced.

The Overall Procedure I

- See the Newton method code at https://github.com/cjlin1/simpleNN/blob/ master/MATLAB/opt/newton.m

Discussion I

- We have known that at each iteration

$$
G^{S}=\frac{1}{C} \mathcal{I}+\frac{1}{|S|} \sum_{i \in S}\left(J^{i}\right)^{T} B^{i} J^{i}
$$

is considered

- The remaining issues are
- How to calculate

$$
J^{i}, \forall i \in S
$$

- How to calculate

$$
\left(J^{i}\right)^{T}\left(B^{i}\left(J^{i} v\right)\right)
$$

