
We have discussed sub-sampled Newton method to
address the memory issue

Another technique to address the memory difficulty
will be discussed later

Now we discuss several other considerations to make
Newton methods practical

Chih-Jen Lin (National Taiwan Univ.) 1 / 12

Levenberg-Marquardt Method I

Besides backtracking line search, in optimization
another way to adjust the direction is the
Levenberg-Marquardt method (Levenberg, 1944;
Marquardt, 1963)

It modifies the linear system to

(G S + λI)d = −∇f (θ)

The value λ is decided by how good the function
reduction is.

It is updated by the following settings.

Chih-Jen Lin (National Taiwan Univ.) 2 / 12

Levenberg-Marquardt Method II

If θ + d is the next iterate after line search, we
define

ρ =
f (θ + d)− f (θ)

∇f (θ)Td + 1
2d

TG Sd

as the ratio of

actual function reduction

predicted reduction

Chih-Jen Lin (National Taiwan Univ.) 3 / 12

Levenberg-Marquardt Method III

By using ρ, the parameter λnext for the next
iteration is decided by

λnext =


λ× drop ρ > ρupper,

λ ρlower ≤ ρ ≤ ρupper,

λ× boost otherwise,

where
drop < 1, boost > 1

are given constants.

In our code you can see

Chih-Jen Lin (National Taiwan Univ.) 4 / 12

Levenberg-Marquardt Method IV

param.drop = 2/3;

param.boost = 3/2;

and
ρupper = 0.75, ρlower = 0.25

If the function-value reduction is not satisfactory, λ
is enlarged and the resulting direction is closer to
the negative gradient.

In optimization practice, if backtracking line search
has been applied, usually there is no need to apply
this LM method

Chih-Jen Lin (National Taiwan Univ.) 5 / 12

Levenberg-Marquardt Method V

However, some past works (e.g., Martens, 2010;
Wang et al., 2018) on fully-connected networks
seem to show that applying both is useful

The use of LM in training NN is still an issue to be
investigated

Chih-Jen Lin (National Taiwan Univ.) 6 / 12

Function and Gradient Evaluation I

Recall in gradient evaluation the following main
steps are conducted:

∆← mat(vec(∆)TPm,i
pool)

∂ξi
∂Wm

= ∆ · φ(pad(Zm,i))T

∆← vec
(
(Wm)T∆

)T
Pm
φ P

m
pad

∆← ∆� I [Zm,i]

Chih-Jen Lin (National Taiwan Univ.) 7 / 12

Function and Gradient Evaluation II

Clearly we must store Zi , or even φ(pad(Zm,i),∀i
after the forward process.

This is fine for stochastic gradient as we use a small
batch of data

However, for Newton we need the full gradient so
we can check the sufficient decrease condition

The memory cost is then

∝ # total data

This is not feasible

Chih-Jen Lin (National Taiwan Univ.) 8 / 12

Function and Gradient Evaluation III

Fortunately we can calculate the gradient by the
sum of sub-gradients

∂f

∂Wm
=

1

C
Wm +

1

l

l∑
i=1

∂ξi
∂Wm

, (1)

∂f

∂bm =
1

C
b
m +

1

l

l∑
i=1

∂ξi
∂bm . (2)

Thus we can split the index set {1, . . . , l} of data
to, for example, R equal-sized subsets S1, . . . , SR

Chih-Jen Lin (National Taiwan Univ.) 9 / 12

Function and Gradient Evaluation IV

We sequentially calculate the result corresponding
to each subset and accumulate them for the final
output.

For example, to have Zm,i needed in the backward
process for calculating the gradient, we must store
them after the forward process for function
evaluation.

By using a subset, only Zm,i with i in this subset are
stored, so the memory usage can be dramatically
reduced.

Chih-Jen Lin (National Taiwan Univ.) 10 / 12

The Overall Procedure I

See the Newton method code at
https://github.com/cjlin1/simpleNN/blob/

master/MATLAB/opt/newton.m

Chih-Jen Lin (National Taiwan Univ.) 11 / 12

https://github.com/cjlin1/simpleNN/blob/master/MATLAB/opt/newton.m
https://github.com/cjlin1/simpleNN/blob/master/MATLAB/opt/newton.m

Discussion I

We have known that at each iteration

G S =
1

C
I +

1

|S |
∑
i∈S

(J i)TB iJ i

is considered
The remaining issues are

How to calculate

J i ,∀i ∈ S

How to calculate

(J i)T
(
B i(J iv)

)
Chih-Jen Lin (National Taiwan Univ.) 12 / 12

