
Memory Cost of Storing J i I

The Gauss-Newton matrix is

G =
1

C
I +

1

l

l∑
i=1

(J i)TB iJ i

Its size is
n × n,

where n is the total number of variables
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Memory Cost of Storing J i II

But storing J i needs

nL+1 × n × l ,

where

nL+1 : # nodes in the output layer (# classes)

l : number of data

If
n < nL+1 × l ,

then storing J i ,∀i needs more spaces than G
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Memory Cost of Storing J i III

Then the Hessian-free method cannot work

A related question is why earlier in calculating the
gradient we did not get J i , store it, and then
calculate

∇f (θ)

=
1

C
θ +

1

l

l∑
i=1

(J i)T∇
z
L+1,iξ(zL+1,i ; y i ,Z 1,i)

Instead we use backpropagation without explicitly
storing J i ,∀i
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Memory Cost of Storing J i IV

For gradient, J i is used only once

However, in each Newton iteration we need J i

several times

J i is used in every matrix-vector product, so maybe
there is a need to store it (or store some information
about it)

Some techniques can be used to alleviate the
memory problem of storing J i ,∀i

Subsampled Hessian Newton method. This
technique reduces the memory consumption of
storing J i
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Memory Cost of Storing J i V

Forward and reverse modes of automatic
differentiation. This technique leads to the
calculation of matrix-vector products without
storing J i
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Subsampled Hessian Newton Method I

We know the gradient needs a sum over all data

∇f (θ) =
1

C
θ +

1

l

l∑
i=1

∇θξi

In stochastic gradient, we do mini-batch

Like mini-batch, in Newton we can use a subset of
data for

matrix-vector products

and

function/gradient evaluation
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Subsampled Hessian Newton Method II

This is possible: subsampled Newton method (Byrd
et al., 2011; Martens, 2010; Wang et al., 2015)

Assume the large number of data points are from
the same distribution

We can select a subset S ⊂ {1, . . . , l} and have

G S =
1

C
I +

1

|S |
∑
i∈S

(J i)TB iJ i ≈ G .
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Subsampled Hessian Newton Method III

Then the matrix-vector product becomes

G Sv =
1

C
v +

1

|S |
∑
i∈S

(
(J i)T

(
B i(J iv)

))
(1)

The cost of storing J i is reduced from

nL+1 × n × l

to
nL+1 × n × |S |
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Subsampled Hessian Newton Method IV

Typically a choice may be

|S | = (0.05 or 0.01)× l

The selection of the size |S | is still an issue worth
investigation

At this moment we consider

subset for matrix-vector products

and

full set for function/gradient evaluation

Reason: no matter what a subset S is chosen,
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Subsampled Hessian Newton Method V

G S is still positive definite

Then
G Sd = −∇f (θ)

leads to

∇f (θ)Td = −∇f (θ)T (G S)−1∇f (θ) < 0

If we use a subset for the gradient, then the above
inequality may not hold

Then the situation becomes more complicated
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Subsampled Hessian Newton Method VI

Note that if using the full set for function/gradient
evaluations, we have theoretical asymptotic
convergence to a stationary point (Byrd et al., 2011)
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