Memory Cost of Storing Ji

- The Gauss-Newton matrix is

$$
G=\frac{1}{C} \mathcal{I}+\frac{1}{l} \sum_{i=1}^{l}\left(J^{i}\right)^{T} B^{i} J^{i}
$$

- Its size is

$$
n \times n
$$

where n is the total number of variables

Memory Cost of Storing Ji II

- But storing J^{i} needs

$$
n_{L+1} \times n \times I
$$

where
$n_{L+1}: \#$ nodes in the output layer (\# classes)
I : number of data

- If

$$
n<n_{L+1} \times I,
$$

then storing $J^{i}, \forall i$ needs more spaces than G

Memory Cost of Storing Ji III

- Then the Hessian-free method cannot work
- A related question is why earlier in calculating the gradient we did not get J^{i}, store it, and then calculate

$$
\begin{aligned}
& \nabla f(\boldsymbol{\theta}) \\
= & \frac{1}{C} \boldsymbol{\theta}+\frac{1}{l} \sum_{i=1}^{\prime}\left(J^{i}\right)^{T} \nabla_{\boldsymbol{z}^{L+1, i}} \xi\left(\boldsymbol{z}^{L+1, i} ; \boldsymbol{y}^{i}, z^{1, i}\right)
\end{aligned}
$$

- Instead we use backpropagation without explicitly storing $J^{i}, \forall i$

Memory Cost of Storing Ji IV

- For gradient, J^{i} is used only once
- However, in each Newton iteration we need Ji several times
- J^{i} is used in every matrix-vector product, so maybe there is a need to store it (or store some information about it)
- Some techniques can be used to alleviate the memory problem of storing $J^{i}, \forall i$
- Subsampled Hessian Newton method. This technique reduces the memory consumption of storing J^{i}

Memory Cost of Storing Ji V

- Forward and reverse modes of automatic differentiation. This technique leads to the calculation of matrix-vector products without storing J^{i}

Subsampled Hessian Newton Method I

- We know the gradient needs a sum over all data

$$
\nabla f(\boldsymbol{\theta})=\frac{1}{C} \boldsymbol{\theta}+\frac{1}{l} \sum_{i=1}^{l} \nabla_{\boldsymbol{\theta}} \xi_{i}
$$

- In stochastic gradient, we do mini-batch
- Like mini-batch, in Newton we can use a subset of data for

matrix-vector products

and
function/gradient evaluation

Subsampled Hessian Newton Method II

- This is possible: subsampled Newton method (Byrd et al., 2011; Martens, 2010; Wang et al., 2015)
- Assume the large number of data points are from the same distribution
- We can select a subset $S \subset\{1, \ldots, I\}$ and have

$$
G^{S}=\frac{1}{C} \mathcal{I}+\frac{1}{|S|} \sum_{i \in S}\left(J^{i}\right)^{T} B^{i} J^{i} \approx G
$$

Subsampled Hessian Newton Method III

- Then the matrix-vector product becomes

$$
\begin{equation*}
G^{S} \boldsymbol{v}=\frac{1}{C} \boldsymbol{v}+\frac{1}{|S|} \sum_{i \in S}\left(\left(J^{i}\right)^{T}\left(B^{i}\left(J^{i} \boldsymbol{v}\right)\right)\right) \tag{1}
\end{equation*}
$$

- The cost of storing J^{i} is reduced from

$$
n_{L+1} \times n \times 1
$$

to

$$
n_{L+1} \times n \times|S|
$$

Subsampled Hessian Newton Method IV

- Typically a choice may be

$$
|S|=(0.05 \text { or } 0.01) \times 1
$$

- The selection of the size $|S|$ is still an issue worth investigation
- At this moment we consider
subset for matrix-vector products and
full set for function/gradient evaluation
- Reason: no matter what a subset S is chosen,

Subsampled Hessian Newton Method V

G^{S} is still positive definite

- Then

$$
G^{S} \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})
$$

leads to

$$
\nabla f(\boldsymbol{\theta})^{T} \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})^{T}\left(G^{S}\right)^{-1} \nabla f(\boldsymbol{\theta})<0
$$

- If we use a subset for the gradient, then the above inequality may not hold
- Then the situation becomes more complicated

Subsampled Hessian Newton Method VI

- Note that if using the full set for function/gradient evaluations, we have theoretical asymptotic convergence to a stationary point (Byrd et al., 2011)

