Hessian-free Newton Method I

- Recall that at each Newton iteration we must solve a linear system

$$
G \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})
$$

and G is huge

- G's size is

$$
n \times n
$$

where n is the total number of variables

- It is not possible to store G

Hessian-free Newton Method II

- Thus methods such as Gaussian elimination are not possible
- If G has certain structures, it's possible to use iterative methods to solve the linear system by a sequence of matrix-vector products

$$
G v^{1}, G v^{2}, \ldots
$$

without storing G

- This is called Hessian-free in optimization

Hessian-free Newton Method III

- For example, conjugate gradient (CG) method can be used to solve

$$
G \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})
$$

by a sequence of matrix-vector products (Hestenes and Stiefel, 1952)

- We don't discuss details of CG here though the procedure will be shown in a later slide
- You can check Golub and Van Loan (2012) for a good introduction

Hessian-free Newton Method IV

- Each CG step involves one matrix-vector product
- For many machine learning methods, G has certain structures so that calculating

Gd

is practically feasible

- The cost of Hessian-free Newton is
(\#matrix-vector products + function/gradient evaluation) \times \#iterations

Hessian-free Newton Method V

- Usually the number of iterations is small
- In theory, the number of CG steps (matrix-vector products) is \leq the number of variables
- For our problem we will see that each matrix-vector product can be as expensive as one function/gradient evaluation
- Thus, matrix-vector products can be the bottleneck

Conjugate Gradient Method I

- We would like to solve

$$
A x=b
$$

where A is symmetric positive definite

- The procedure

$$
\begin{aligned}
& k=0 ; x=0 ; r=b ; \rho_{0}=\|r\|_{2}^{2} \\
& \text { while } \sqrt{\rho_{k}}>\epsilon\|b\|_{2} \text { and } k<k_{\max } \\
& \quad k=k+1 \\
& \quad \text { if } k=1 \\
& \quad p=r
\end{aligned}
$$

Conjugate Gradient Method II

else

$$
\begin{aligned}
& \qquad \begin{array}{l}
\beta=\rho_{k-1} / \rho_{k-2} \\
p=r+\beta p
\end{array} \\
& \text { end }
\end{aligned}
$$

$w=A p$
$\alpha=\rho_{k-1} / p^{T} w$
$x=x+\alpha p$
$r=r-\alpha w$
$\rho_{k}=\|r\|_{2}^{2}$
end

Conjugate Gradient Method III

- Note that

$$
r=b-A x
$$

indicates the error

- We can see that $A p$ is the only matrix-vector product at each step
- Others are vector operations

Matrix-vector Products I

- Earlier we have shown that the Gauss-Newton matrix is

$$
G=\frac{1}{C} \mathcal{I}+\frac{1}{l} \sum_{i=1}^{l}\left(J^{i}\right)^{T} B^{i} J^{i}
$$

- We have

$$
\begin{equation*}
G \boldsymbol{v}=\frac{1}{C} \boldsymbol{v}+\frac{1}{l} \sum_{i=1}^{l}\left(\left(J^{i}\right)^{T}\left(B^{i}\left(J^{i} v\right)\right)\right) \tag{1}
\end{equation*}
$$

Matrix-vector Products II

- If we can calculate

$$
J^{i} v \text { and }\left(J^{i}\right)^{T}(\cdot)
$$

then G is never explicitly stored

- Therefore, we can apply the conjugate gradient (CG) method by a sequence of matrix-vector products.
- But is this approach really feasible?
- We show that memory can be an issue

