
Hessian-free Newton Method I

Recall that at each Newton iteration we must solve
a linear system

Gd = −∇f (θ)

and G is huge

G ’s size is
n × n,

where n is the total number of variables

It is not possible to store G
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Hessian-free Newton Method II

Thus methods such as Gaussian elimination are not
possible

If G has certain structures, it’s possible to use
iterative methods to solve the linear system by a
sequence of matrix-vector products

Gv 1,Gv 2, . . .

without storing G

This is called Hessian-free in optimization
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Hessian-free Newton Method III

For example, conjugate gradient (CG) method can
be used to solve

Gd = −∇f (θ)

by a sequence of matrix-vector products (Hestenes
and Stiefel, 1952)

We don’t discuss details of CG here though the
procedure will be shown in a later slide

You can check Golub and Van Loan (2012) for a
good introduction
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Hessian-free Newton Method IV

Each CG step involves one matrix-vector product

For many machine learning methods, G has certain
structures so that calculating

Gd

is practically feasible

The cost of Hessian-free Newton is

(#matrix-vector products +

function/gradient evaluation)×#iterations
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Hessian-free Newton Method V

Usually the number of iterations is small

In theory, the number of CG steps (matrix-vector
products) is ≤ the number of variables

For our problem we will see that each matrix-vector
product can be as expensive as one
function/gradient evaluation

Thus, matrix-vector products can be the bottleneck
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Conjugate Gradient Method I

We would like to solve

Ax = b,

where A is symmetric positive definite

The procedure

k = 0; x = 0; r = b; ρ0 = ‖r‖22
while

√
ρk > ε‖b‖2 and k < kmax

k = k + 1
if k = 1

p = r
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Conjugate Gradient Method II

else
β = ρk−1/ρk−2
p = r + βp

end
w = Ap
α = ρk−1/p

Tw
x = x + αp
r = r − αw
ρk = ‖r‖22

end
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Conjugate Gradient Method III

Note that

r = b − Ax

indicates the error

We can see that Ap is the only matrix-vector
product at each step

Others are vector operations
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Matrix-vector Products I

Earlier we have shown that the Gauss-Newton
matrix is

G =
1

C
I +

1

l

l∑
i=1

(J i)TB iJ i

We have

Gv =
1

C
v +

1

l

l∑
i=1

(
(J i)T

(
B i(J iv)

))
. (1)
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Matrix-vector Products II

If we can calculate

J iv and (J i)T (·)

then G is never explicitly stored

Therefore, we can apply the conjugate gradient
(CG) method by a sequence of matrix-vector
products.

But is this approach really feasible?

We show that memory can be an issue
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