
Introduction I

After checking formulations for gradient calculation
we would like to get into implementation details

Take the following operation as an example

∂ξi
∂Wm

=
∂ξi
∂Sm,i

φ(pad(Zm,i))T

It’s a matrix-matrix product

We all know that a three-level for loop does the job

Does that mean we can easily write an efficient
implementation?

The answer is no
Chih-Jen Lin (National Taiwan Univ.) 1 / 9



Introduction II

We want to use optimized code written by experts

To illustrate this point, we check a video about
optimized BLAS (Basic Linear Algebra
Subprograms) borrowed from the course “numerical
methods”

In particular, we discuss the implementation of
matrix-matrix multiplications

Chih-Jen Lin (National Taiwan Univ.) 2 / 9



Discussion I

The discussion on fast matrix-matrix products
roughly explains why GPU is used for deep learning

GPU is efficient for such operations

Note that we did not touch multi-core
implementations, though parallelization is possible

Anyway, the conclusion is that for some operations,
using code written by experts is more efficient than
our own implementation

How about other operations besides matrix-matrix
products?

Chih-Jen Lin (National Taiwan Univ.) 3 / 9



Discussion II

If they can also be done by calling others’ efficient
implementation, then a simple and efficient CNN
implementation can be done

The MATLAB implementation in simpleNN is a
good experimental environment for us to study this

We will explain details and use it in our subsequent
projects

Chih-Jen Lin (National Taiwan Univ.) 4 / 9



Storage I

In the earlier discussion, we check each individual
data.

However, for practical implementations, all (or
some) instances must be considered together for
memory and computational efficiency.

Recall we do mini-batch stochastic gradient

In our discussion we use l to denote the number of
data instances in calculating the gradient (or the
sub-gradient)

Chih-Jen Lin (National Taiwan Univ.) 5 / 9



Storage II

In our MATLAB implementation, we store
Zm,i , ∀i = 1, . . . , l as the following matrix.[

Zm,1 Zm,2 . . . Zm,l
]
∈ Rdm×ambml . (1)

Similarly, we store

∂ξi
∂vec(Sm,i)T

, ∀i

as [
∂ξ1
∂Sm,1 . . . ∂ξl

∂Sm,l

]
∈ Rdm+1×amconvbmconvl . (2)

Chih-Jen Lin (National Taiwan Univ.) 6 / 9



Storage III

We will explain our decision.

Note that (1)-(2) are only the main setting to store
these matrices because for some operations they
may need to be re-shaped.

Chih-Jen Lin (National Taiwan Univ.) 7 / 9



Operations of a Convolutional Layer I

Recall for gradient we have operations

∂ξi

∂vec(Sm,i)T

=

(
∂ξi

∂vec(Zm+1,i)T
� vec(I [Zm+1,i ])T

)
Pm,i
pool

(3)

∂ξi
∂Wm

=
∂ξi
∂Sm,i

φ(pad(Zm,i))T (4)

∂ξi

∂vec(Zm,i)T
= vec

(
(Wm)T

∂ξi
∂Sm,i

)T

Pm
φ P

m
pad, (5)

Chih-Jen Lin (National Taiwan Univ.) 8 / 9



Operations of a Convolutional Layer II

Based on the way discussed to store variables, we
will discuss two operations in detail

Generation of φ(pad(Zm,i))
vector ×Pm

φ

Chih-Jen Lin (National Taiwan Univ.) 9 / 9


