Introduction I

- After checking formulations for gradient calculation we would like to get into implementation details
- Take the following operation as an example

$$
\frac{\partial \xi_{i}}{\partial W^{m}}=\frac{\partial \xi_{i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}
$$

- It's a matrix-matrix product
- We all know that a three-level for loop does the job
- Does that mean we can easily write an efficient implementation?
- The answer is no

Introduction II

- We want to use optimized code written by experts
- To illustrate this point, we check a video about optimized BLAS (Basic Linear Algebra Subprograms) borrowed from the course "numerical methods"
- In particular, we discuss the implementation of matrix-matrix multiplications

Discussion I

- The discussion on fast matrix-matrix products roughly explains why GPU is used for deep learning
- GPU is efficient for such operations
- Note that we did not touch multi-core implementations, though parallelization is possible
- Anyway, the conclusion is that for some operations, using code written by experts is more efficient than our own implementation
- How about other operations besides matrix-matrix products?

Discussion II

- If they can also be done by calling others' efficient implementation, then a simple and efficient CNN implementation can be done
- The MATLAB implementation in simpleNN is a good experimental environment for us to study this
- We will explain details and use it in our subsequent projects

Storage

- In the earlier discussion, we check each individual data.
- However, for practical implementations, all (or some) instances must be considered together for memory and computational efficiency.
- Recall we do mini-batch stochastic gradient
- In our discussion we use / to denote the number of data instances in calculating the gradient (or the sub-gradient)

Storage II

- In our MATLAB implementation, we store $Z^{m, i}, \forall i=1, \ldots, l$ as the following matrix.

$$
\left[\begin{array}{llll}
Z^{m, 1} & Z^{m, 2} & \ldots & Z^{m, l} \tag{1}
\end{array}\right] \in R^{d^{m} \times a^{m} b^{m} l}
$$

- Similarly, we store

$$
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}}, \forall i
$$

as

$$
\left[\begin{array}{lll}
\frac{\partial \xi_{1}}{\partial S^{m, 1}} & \cdots & \frac{\partial \xi_{1}}{\partial S^{m, /}} \tag{2}
\end{array}\right] \in R^{d^{m+1} \times a_{\text {conb }}^{m} b_{\text {conv }}^{m}} .
$$

Storage III

- We will explain our decision.
- Note that (1)-(2) are only the main setting to store these matrices because for some operations they may need to be re-shaped.

Operations of a Convolutional Layer I

- Recall for gradient we have operations

$$
\begin{gather*}
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
=\left(\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}\right) P_{\text {pool }}^{m, i} \tag{3}\\
\frac{\partial \xi_{i}}{\partial W^{m}}=\frac{\partial \xi_{i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \tag{4}\\
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m, i}\right)^{T}}=\operatorname{vec}\left(\left(W^{m}\right)^{T} \frac{\partial \xi_{i}}{\partial S_{m, i}^{m}}\right)^{T} P_{\phi}^{m} P_{\operatorname{pad}}^{m}, \tag{5}
\end{gather*}
$$

Operations of a Convolutional Layer II

- Based on the way discussed to store variables, we will discuss two operations in detail
- Generation of $\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)$
- vector $\times P_{\phi}^{m}$

