N
Introduction |

o After checking formulations for gradient calculation
we would like to get into implementation details

@ Take the following operation as an example

({95,' . agl
owm — 9Smi

d(pad(Z™))"

@ It's a matrix-matrix product
@ We all know that a three-level for loop does the job

@ Does that mean we can easily write an efficient
implementation?

@ The answer is no
0

N
Introduction ||

@ We want to use optimized code written by experts

@ To illustrate this point, we check a video about
optimized BLAS (Basic Linear Algebra
Subprograms) borrowed from the course “numerical
methods”

@ In particular, we discuss the implementation of
matrix-matrix multiplications

Chih-Jen Lin (National Taiwan Univ.)

2/9

R
Discussion |

@ The discussion on fast matrix-matrix products
roughly explains why GPU is used for deep learning

@ GPU is efficient for such operations

@ Note that we did not touch multi-core
implementations, though parallelization is possible

@ Anyway, the conclusion is that for some operations,
using code written by experts is more efficient than
our own implementation

@ How about other operations besides matrix-matrix
products?

Chih-Jen Lin (National Taiwan Univ.)

3/9

R
Discussion ||

@ If they can also be done by calling others’ efficient
implementation, then a simple and efficient CNN
implementation can be done

@ The MATLAB implementation in simpleNN is a
good experimental environment for us to study this

@ We will explain details and use it in our subsequent
projects

Chih-Jen Lin (National Taiwan Univ.)

4/9

-
Storage |

@ In the earlier discussion, we check each individual
data.

@ However, for practical implementations, all (or
some) instances must be considered together for
memory and computational efficiency.

@ Recall we do mini-batch stochastic gradient

@ In our discussion we use [/ to denote the number of
data instances in calculating the gradient (or the
sub-gradient)

Chih-Jen Lin (National Taiwan Univ.)

5/9

-
Storage |l

@ In our MATLAB implementation, we store
Z™' . Yi=1,...,1 as the following matrix.

[Zm7l Zm,2 Zm,/} c Rd’"xa”’b’"/.

@ Similarly, we store

%3 .
—.7-7 VI
Ovec(S™1)
as
8£ ag dm+1 X a(’:"z)nv b(’:?)nvl
ety ... ge] €R .

Chih-Jen Lin (National Taiwan Univ.)

(1)

6/9

-
Storage I

@ We will explain our decision.

@ Note that (1)-(2) are only the main setting to store
these matrices because for some operations they
may need to be re-shaped.

Chih-Jen Lin (National Taiwan Univ.)

7/9

-
Operations of a Convolutional Layer |

@ Recall for gradient we have operations
%3
dvec(Smi) T

_ %Ki e[z)T | P
Ovec(Zm+1.7)

(3)

af,' - 65/ m,ix\T
Sim = gard(pad(Z™) (4)
23 _ mT_ 98
T v ((w) %m,,.) n. (5)

Chih-Jen Lin (National Taiwan Univ.) 8/9

-
Operations of a Convolutional Layer |l

@ Based on the way discussed to store variables, we
will discuss two operations in detail

o Generation of ¢(pad(Z™'))
e vector XP(;"

9/9

