
Introduction I

Many deep learning courses have contents like

fully-connected networks
its optimization problem
its gradient (back propagation)
...
other types of networks (e.g., CNN)
...

If I am a student of such courses, after seeing the
significant differences of CNN from fully-connected
networks, I wonder how the back propagation can
be done

Chih-Jen Lin (National Taiwan Univ.) 1 / 11



Introduction II

The problem is that back propagation for CNN
seems to be very complicated

So fewer people talk about details

Here we try to give a clear explanation
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Gradient I

Consider two layers m and m + 1. The variables
between them are Wm and b

m, so we aim to
calculate
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Note that (1) is in a matrix form
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Gradient II

Following past developments such as Vedaldi and
Lenc (2015), it is easier to transform them to a
vector form for the derivation.
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Vector Form I

For the convolutional layers, recall that

Sm,i =Wm mat(Pm
φ P
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Vector Form II

We have
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Vector Form III

where I is an identity matrix. For example,

Iamconvbmconv

is an
amconvb

m
conv × amconvb

m
conv

identity matrix. Eqs. (4) and (5) are respectively
from

vec(AB) = (I ⊗ A)vec(B) (6)

= (BT ⊗ I)vec(A), (7)

Chih-Jen Lin (National Taiwan Univ.) 7 / 11



Vector Form IV

Here ⊗ is the Kronecker product.

What’s the Kronecker product? If

A ∈ Rm×n

then

A⊗ B =

a11B · · · a1nB
...

am1B · · · amnB

 ,
a much bigger matrix
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Vector Form V

For the fully-connected layers,

s
m,i

=Wm
z
m,i + b

m

= (I1 ⊗Wm) zm,i + (11 ⊗ Inm+1
)bm (8)

=
(
(zm,i)T ⊗ Inm+1

)
vec(Wm) + (11 ⊗ Inm+1

)bm,
(9)

where (8) and (9) are from (6) and (7), respectively.

An advantage of using (4) and (8) is that they are
in the same form.
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Vector Form VI

Further, if for fully-connected layers we define

φ(pad(zm,i)) = Inmzm,i , Lc < m ≤ L + 1,

then (5) and (9) are in the same form.

Thus we can derive the gradient of convolutional
and fully-connected layers together
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