## Introduction I

- Many deep learning courses have contents like
- fully-connected networks
- its optimization problem
- its gradient (back propagation)
- ...
- other types of networks (e.g., CNN)
- ...
- If I am a student of such courses, after seeing the significant differences of CNN from fully-connected networks, I wonder how the back propagation can be done


## Introduction II

- The problem is that back propagation for CNN seems to be very complicated
- So fewer people talk about details
- Here we try to give a clear explanation


## Gradient I

- Consider two layers $m$ and $m+1$. The variables between them are $W^{m}$ and $\boldsymbol{b}^{m}$, so we aim to calculate

$$
\begin{align*}
\frac{\partial f}{\partial W^{m}} & =\frac{1}{C} W^{m}+\frac{1}{l} \sum_{i=1}^{l} \frac{\partial \xi_{i}}{\partial W^{m}}  \tag{1}\\
\frac{\partial f}{\partial \boldsymbol{b}^{m}} & =\frac{1}{C} \boldsymbol{b}^{m}+\frac{1}{l} \sum_{i=1}^{l} \frac{\partial \xi_{i}}{\partial \boldsymbol{b}^{m}} \tag{2}
\end{align*}
$$

- Note that (1) is in a matrix form


## Gradient II

- Following past developments such as Vedaldi and Lenc (2015), it is easier to transform them to a vector form for the derivation.


## Vector Form I

- For the convolutional layers, recall that

$$
\begin{gather*}
S^{m, i}=W^{m} \underbrace{\operatorname{mat}\left(P_{\phi}^{m} P_{\mathrm{pad}}^{m} \operatorname{vec}\left(Z^{m, i}\right)\right)_{h^{m} h^{m} d^{m} \times a_{\text {conv }}^{m} b_{\mathrm{conv}}^{m}}+}_{\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)} \\
\boldsymbol{b}^{m} \mathbb{1}_{a_{\mathrm{conv}}^{m} b_{\mathrm{conv}}^{m}}^{T} \\
Z^{m+1, i}=\operatorname{mat}\left(P_{\mathrm{pool}}^{m, i} \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)\right)_{d^{m+1} \times a^{m+1} b^{m+1}}, \tag{3}
\end{gather*}
$$

## Vector Form II

- We have

$$
\begin{align*}
& \operatorname{vec}\left(S^{m, i}\right) \\
= & \operatorname{vec}\left(W^{m} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)\right)+\operatorname{vec}\left(\boldsymbol{b}^{m} \mathbb{1}_{a_{\text {conv }}^{m} b_{c o n v}^{m}}^{T}\right) \\
= & \left(\mathcal{I}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}} \otimes W^{m}\right) \operatorname{vec}\left(\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)\right)+ \\
& \left(\mathbb{1}_{a_{\text {conv }}^{m} v_{\text {conv }}^{m}} \otimes \mathcal{I}_{d^{m+1}}\right) \boldsymbol{b}^{m}  \tag{4}\\
= & \left(\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \otimes \mathcal{I}_{d^{m+1}}\right) \operatorname{vec}\left(W^{m}\right)+ \\
& \left(\mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}} \otimes \mathcal{I}_{d^{m+1}}\right) \boldsymbol{b}^{m}, \tag{5}
\end{align*}
$$

## Vector Form III

where $\mathcal{I}$ is an identity matrix. For example,

$$
\mathcal{I}_{a_{\text {conv }}^{m}} b_{\text {conv }}^{m}
$$

is an

$$
a_{\text {conv }}^{m} b_{\text {conv }}^{m} \times a_{\text {conv }}^{m} b_{\text {conv }}^{m}
$$

identity matrix. Eqs. (4) and (5) are respectively from

$$
\begin{align*}
\operatorname{vec}(A B) & =(\mathcal{I} \otimes A) \operatorname{vec}(B)  \tag{6}\\
& =\left(B^{T} \otimes \mathcal{I}\right) \operatorname{vec}(A)
\end{align*}
$$

## Vector Form IV

- Here $\otimes$ is the Kronecker product.
- What's the Kronecker product? If

$$
A \in \mathrm{R}^{m \times n}
$$

then

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
& \vdots & \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right]
$$

a much bigger matrix

## Vector Form V

- For the fully-connected layers,

$$
\begin{align*}
& \boldsymbol{s}^{m, i} \\
= & W^{m} \boldsymbol{z}^{m, i}+\boldsymbol{b}^{m} \\
= & \left(\mathcal{I}_{1} \otimes W^{m}\right) \boldsymbol{z}^{m, i}+\left(\mathbb{1}_{1} \otimes \mathcal{I}_{n_{m+1}}\right) \boldsymbol{b}^{m}  \tag{8}\\
= & \left(\left(\boldsymbol{z}^{m, i}\right)^{T} \otimes \mathcal{I}_{n_{m+1}}\right) \operatorname{vec}\left(W^{m}\right)+\left(\mathbb{1}_{1} \otimes \mathcal{I}_{n_{m+1}}\right) \boldsymbol{b}^{m}, \tag{9}
\end{align*}
$$

where (8) and (9) are from (6) and (7), respectively.

- An advantage of using (4) and (8) is that they are in the same form.


## Vector Form VI

- Further, if for fully-connected layers we define

$$
\phi\left(\operatorname{pad}\left(z^{m, i}\right)\right)=\mathcal{I}_{n_{m}} z^{m, i}, \quad L^{c}<m \leq L+1
$$

then (5) and (9) are in the same form.

- Thus we can derive the gradient of convolutional and fully-connected layers together


## References I

A. Vedaldi and K. Lenc. MatConvNet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM International Conference on Multimedia, pages 689-692, 2015.

