Summary of Operations I

- We show convolutional layers only and the bias term is omitted
- Also we assume that RELU activation and max pooling are used
- Operations in order

$$
\begin{align*}
& \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
= & \left(\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}\right) P_{\text {pool }}^{m, i} . \tag{1}
\end{align*}
$$

Summary of Operations II

$$
\begin{gather*}
\frac{\partial \xi_{i}}{\partial W^{m}}=\frac{\partial \xi_{i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \tag{2}\\
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m, i}\right)^{T}}=\operatorname{vec}\left(\left(W^{m}\right)^{T} \frac{\partial \xi_{i}}{\partial S^{m, i}}\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m} \tag{3}
\end{gather*}
$$

- Note that after (1), we change

$$
\text { a vector } \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \text { to a matrix } \frac{\partial \xi_{i}}{\partial S^{m, i}}
$$

because in (2) and (3), matrix form is needed

- In (1), information of the next layer is used.

Summary of Operations III

- Instead we can do

$$
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m, i}\right)^{T}} \odot \operatorname{vec}\left(I\left[Z^{m, i}\right]\right)^{T}
$$

in the end of the current layer
This becomes the information passed to the previous layer

- Then only information in the current layer is used

Summary of Operations IV

- Finally an implementation for one convolutional layer:

$$
\begin{gathered}
\Delta \leftarrow \operatorname{mat}\left(\operatorname{vec}(\Delta)^{T} P_{\mathrm{pool}}^{m, i}\right) \\
\frac{\partial \xi_{i}}{\partial W^{m}}=\Delta \cdot \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \\
\Delta \leftarrow \operatorname{vec}\left(\left(W^{m}\right)^{T} \Delta\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m} \\
\Delta \leftarrow \Delta \odot I\left[Z^{m, i}\right]
\end{gathered}
$$

- A sample segment of code in MATLAB

Summary of Operations V

for $m=L C:-1$: 1
dXidS $=$ reshape (vTP (param, model, net, m, dXidS, 'pool_gradient'), model.ch_input (m+1), []);
phiZ = padding_and_phiZ(model, net, m); net.dlossdW\{m\} = dXidS*phiZ';
net.dlossdb\{m\} = dXidS*ones (model.wd_conv (m) model.ht_conv(m)*S_k, 1);
if $m>1$

Summary of Operations VI

$\mathrm{v}=\operatorname{model} . \mathrm{weight} \mathrm{\{m} \mathrm{\}}{ }^{\prime} * \operatorname{dXidS} ;$
dXidS $=$ vTP (model, net, m, num_data, v, 'phi_gradient');
\% vTP_pad
dXidS = reshape(dXidS, model.ch_input(m), model.ht_pad(m), model.wd_pad (m), []);
$\mathrm{p}=$ model.wd_pad_added (m) ;
dXidS = dXidS(:, p+1:p+model.ht_input(m), p+1:p+model.wd_input(m), :)

Summary of Operations VII

\% activation function
dXidS = reshape(dXidS, model.ch_input(m), []) .*(net. Z\{m\} > 0);
end

Storing $\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)$

- From the above summary, we see that

$$
\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)
$$

is calculated twice in both forward and backward processes

- If this expansion is expensive, we can store it
- But memory is a concern as this is a huge matrix
- So this setting of storing $\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)$ trades space for time. It's more suitable for CPU environments

Complexity I

- To see where the computational bottleneck is, it's important to check the complexity of major operations
- Assume $/$ is the number of data (for the case of calculating the whole gradient)
- For stochastic gradient, I becomes the size of a mini-batch

Complexity II

- Forward:

$$
\begin{aligned}
S^{m, i} & =W^{m} \operatorname{mat}\left(P_{\phi}^{m} P_{\mathrm{pad}}^{m} \operatorname{vec}\left(Z^{m, i}\right)\right) \\
& =W^{m} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)
\end{aligned}
$$

$$
\begin{gather*}
\phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right): \mathcal{O}\left(I \times h^{m} h^{m} d^{m} a_{\text {conv }}^{m} b_{\text {conv }}^{m}\right) \tag{4}\\
W^{m} \phi(\cdot): \mathcal{O}\left(I \quad \times \quad d^{m+1} \quad h^{m} h^{m} d^{m} \quad a_{\text {conv }}^{m} b_{\text {conv }}^{m}\right) \\
Z^{m+1, i}= \\
\operatorname{mat}\left(P_{\text {pool }}^{m, i} \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)\right) \\
\mathcal{O}\left(I \times d^{m+1} a_{\text {conv }}^{m} b_{\text {conv }}^{m}\right) \\
= \\
=\mathcal{O}\left(I \times h^{m} h^{m} d^{m+1} a^{m+1} b^{m+1}\right)
\end{gather*}
$$

Complexity III

See also (4) as for pooling we also have a ϕ to generate sub-images

- Backward:

$$
\Delta \leftarrow \operatorname{mat}\left(\operatorname{vec}(\Delta)^{T} P_{\text {pool }}^{m, i}\right)
$$

Size of Δ same as $S^{m, i}$ so cost is

$$
\begin{gathered}
\mathcal{O}\left(I \times d^{m+1} a_{\text {conv }}^{m} b_{\text {conv }}^{m}\right) \\
\frac{\partial \xi_{i}}{\partial W^{m}}=\Delta \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}
\end{gathered}
$$

Complexity IV

$$
\left.\begin{array}{c}
\mathcal{O}\left(I \quad \times \quad d^{m+1} \quad a_{\text {conv }}^{m} b_{\text {conv }}^{m} \quad h^{m} h^{m} d^{m}\right) . \\
\Delta
\end{array}\right)
$$

$$
\left(W^{m}\right)^{T} \Delta: \mathcal{O}\left(I \quad \times \quad h^{m} h^{m} d^{m} \quad d^{m+1} \quad a_{\text {conv }}^{m} b_{\text {conv }}^{m}\right)
$$

$$
\begin{equation*}
\operatorname{vec}(\cdot) P_{\phi}^{m}: \mathcal{O}\left(I \times h^{m} h^{m} d^{m} a_{\text {conv }}^{m} b_{\text {conv }}^{m}\right) \tag{5}
\end{equation*}
$$

For (5) we convert a matrix of

$$
h^{m} h^{m} d^{m} \times a_{\text {conv }}^{m} b_{\mathrm{conv}}^{m}
$$

to a smaller matrix

$$
d^{m} \times a_{\mathrm{pad}}^{m} b_{\mathrm{pad}}^{m}
$$

Complexity V

- We see that matrix-matrix products are the bottleneck
- If so, why check others?
- The issue is that matrix-matrix products may be better optimized

Discussion: Pooling and Differentiability I

- Recall we have

$$
Z^{m+1, i}=\operatorname{mat}\left(P_{\text {pool }}^{m, i} \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)\right)_{d^{m+1} \times a^{m+1} b^{m+1}}
$$

- We note that

$$
P_{\text {pool }}^{m, i}
$$

is not a constant $0 / 1$ matrix

- It depends on $\sigma\left(S^{m, i}\right)$ to decide the positions of 0 and 1.

Discussion: Pooling and Differentiability II

- Thus like the RELU activation function, max pooling is another place to cause that $f(\boldsymbol{\theta})$ is not differentiable
- However, it is almost differentiable around the current point
- Consider

$$
f(A)=\max \left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\right)
$$

and

$$
A_{11}>A_{12}, A_{21}, A_{22}
$$

Discussion: Pooling and Differentiability III

- Then

$$
\nabla f(A)=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \text { at } A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

- This explains why we can use $P_{\text {pool }}^{m, i}$ in function and gradient evaluations

