Fully-connected Layers I

- For convolutional layers, earlier we obtained

$$
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}}=\operatorname{vec}\left(\frac{\partial \xi_{i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}\right)^{T}
$$

and

$$
\frac{\partial \xi_{i}}{\partial\left(\boldsymbol{b}^{m}\right)^{T}}=\operatorname{vec}\left(\frac{\partial \xi_{i}}{\partial S^{m, i}} \mathbb{1}_{a_{\text {conv }}^{m} b_{\text {conv }}^{m}}\right)^{T}
$$

Fully-connected Layers II

- By considering fully-connected layers as a special case, immediately we get

$$
\begin{align*}
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(W^{m}\right)^{T}} & =\operatorname{vec}\left(\frac{\partial \xi_{i}}{\partial \boldsymbol{s}^{m, i}}\left(z^{m, i}\right)^{T}\right)^{T} \tag{1}\\
\frac{\partial \xi_{i}}{\partial\left(\boldsymbol{b}^{m}\right)^{T}} & =\frac{\partial \xi_{i}}{\partial\left(\boldsymbol{s}^{m, i}\right)^{T}} \tag{2}
\end{align*}
$$

Fully-connected Layers III

Similarly,

$$
\begin{align*}
\frac{\partial \xi_{i}}{\partial\left(z^{m, i}\right)^{T}} & =\left(\left(W^{m}\right)^{T} \frac{\partial \xi_{i}}{\partial\left(\boldsymbol{s}^{m, i}\right)}\right)^{T} \mathcal{I}_{n_{m}} \\
& =\left(\left(W^{m}\right)^{T} \frac{\partial \xi_{i}}{\partial\left(\boldsymbol{s}^{m, i}\right)}\right)^{T} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{\partial \xi_{i}}{\partial\left(\boldsymbol{s}^{m, i}\right)^{T}}=\frac{\partial \xi_{i}}{\partial\left(\boldsymbol{z}^{m+1, i}\right)^{T}} \odot I\left[\mathbf{s}^{m, i}\right]^{T} \tag{4}
\end{equation*}
$$

Fully-connected Layers IV

- Finally, we check the initial values of the backward process.
- Assume that the squared loss is used and in the last layer we have an identity activation function
- Then

$$
\frac{\partial \xi_{i}}{\partial \boldsymbol{z}^{L+1, i}}=2\left(\boldsymbol{z}^{L+1, i}-\boldsymbol{y}^{i}\right), \text { and } \frac{\partial \xi_{i}}{\partial \boldsymbol{s}^{L, i}}=\frac{\partial \xi_{i}}{\partial \boldsymbol{z}^{L+1, i}}
$$

Notes on RELU Activation + Max Pooling

- Recall we said that in

$$
\frac{\partial \xi_{i}}{\partial W^{m}}=\frac{\partial \xi_{i}}{\partial S^{m, i}} \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T}
$$

$Z^{m, i}$ is available from the forward process

- Therefore

$$
Z^{m, i}, \forall m
$$

are stored.

Notes on RELU Activation + Max Pooling

 II- But we also need $S^{m, i}$ for

$$
\begin{align*}
& \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \tag{5}\\
= & \left(\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} P_{\text {pool }}^{m, i}\right) \odot \operatorname{vec}\left(I\left[S^{m, i}\right]\right)^{T}
\end{align*}
$$

- Do we need to store both $Z^{m, i}$ and $S^{m, i}$?

Notes on RELU Activation + Max Pooling

 III- We can avoid storing $S^{m, i}, \forall m$ by replacing (5) with

$$
\begin{align*}
& \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
= & \left(\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \odot \operatorname{vec}\left(I\left[Z^{m+1, i}\right]\right)^{T}\right) P_{\text {pool }}^{m, i} . \tag{6}
\end{align*}
$$

- Why? Let's look at the relation between $Z^{m+1, i}$ and $S^{m, i}$

$$
Z^{m+1, i}=\operatorname{mat}\left(P_{\text {pool }}^{m, i} \operatorname{vec}\left(\sigma\left(S_{(}^{m, i}\right)\right)\right)
$$

Notes on RELU Activation + Max Pooling

 IV- $Z^{m+1, i}$ is a "smaller matrix" than $S^{m, i}$ after max pooling
- That is, (5) is a "reverse mapping" of the pooling operation
- $\ln (5)$,

$$
\begin{equation*}
\frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \times P_{\text {pool }}^{m, i} \tag{7}
\end{equation*}
$$

generates a large zero vector and puts values of $\partial \xi_{i} / \partial \mathrm{vec}\left(Z^{m+1, i}\right)^{T}$ into positions selected earlier in the max pooling operation.

Notes on RELU Activation + Max Pooling

 V- Then, element-wise multiplications of (7) and $I\left[S^{m, i}\right]^{T}$ are conducted.
- Positions not selected in the max pooling procedure are zeros after (7)
- They are still zeros after the Hadamard product between (7) and $I\left[S^{m, i}\right]^{T}$
- Thus, (5) and (6) give the same results.

Notes on RELU Activation + Max Pooling

 VI- An illustration using our earlier example. This illustration was generated with the help of
Cheng-Hung Liu in my group
- Recall an earlier max pooling example is

$$
\text { image } B\left[\begin{array}{ll|ll}
3 & 2 & 3 & 6 \\
4 & 5 & 4 & 9 \\
\hline 2 & 1 & 2 & 6 \\
3 & 4 & 3 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
5 & 9 \\
4 & 6
\end{array}\right]
$$

Notes on RELU Activation + Max Pooling

VII

- The corresponding pooling matrix is

$$
\begin{aligned}
& P_{\text {pool }} \\
& =\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Notes on RELU Activation + Max Pooling VIII

- We have that

$$
P_{\text {poolvec }(\text { image })}=\left[\begin{array}{l}
5 \\
4 \\
9 \\
6
\end{array}\right]=\operatorname{vec}\left(\left[\begin{array}{ll}
5 & 9 \\
4 & 6
\end{array}\right]\right)
$$

Notes on RELU Activation + Max Pooling

 IX- If using (5),

$$
\begin{array}{rl}
& \boldsymbol{v}^{T} P_{\text {pool }} \odot \operatorname{vec}\left(I\left[S^{m}\right]\right)^{T} \\
= & {\left[\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 0 & v_{1} & 0 & v_{2} & 0 & 0 & 0 & 0 & 0 \\
v_{3} & v_{4} & 0
\end{array}\right]} \\
& \odot \\
= & {\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]} \\
0 & 0
\end{array} 0<0<v_{1}
$$

Notes on RELU Activation + Max Pooling

- If using (6),

$$
\left.\begin{array}{rl}
& \left(v^{T} \odot \operatorname{vec}\left(I\left[Z^{m+1}\right]\right)^{T}\right) P_{\text {pool }} \\
= & \left(v^{T} \odot\left[\begin{array}{lllll}
1 & 1 & 1 & 1
\end{array}\right]\right) P_{\text {pool }} \\
= & {\left[\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 0 & v_{1} & 0 & v_{2} & 0 & 0 & 0 & 0 & 0
\end{array} v_{3}\right.} \\
v_{4} & 0
\end{array}\right]
$$

- So they are the same
- In the derivation we used the properties of
- RELU activation function and
- max pooling

Notes on RELU Activation + Max Pooling

 XIto get

$$
\begin{aligned}
& \text { a } Z^{m+1, i} \text { component }>0 \text { or not } \\
\Leftrightarrow & \text { the corresponding } \sigma^{\prime}\left(S^{m, i}\right)=1 \text { or } 0
\end{aligned}
$$

- For general cases we might not be able to avoid storing $\sigma^{\prime}\left(S^{m, i}\right)$

