
Reverse Mode of AD I

Consider

v̄i =
∂yj
∂vi

Note that earlier we considered

v̇i =
∂vi
∂x1

Consider again

f (x1, x2) = ln x1 + x1x2 − sin x2

Let us check the variable v0
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Reverse Mode of AD II

From the computational graph

v−1 v1 v4

v0

v2

v3

v5 f (x1, x2)

x1

x2

v0 can affect y through affecting v2 and v3
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Reverse Mode of AD III

Thus
∂y

∂v0
=

∂y

∂v2

∂v2
∂v0

+
∂y

∂v3

∂v3
∂v0

or

v̄0 = v̄2
∂v2
∂v0

+ v̄3
∂v3
∂v0

In the practical implementation shown later, this is
done in two steps

v̄0 ← v̄3
∂v3
∂v0

v̄0 ← v̄0 + v̄2
∂v2
∂v0
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Reverse Mode of AD IV

They are part of the following sequence of reverse
computation:
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Reverse Mode of AD V

x̄1 =v̄−1 = 5.5
x̄2 =v̄0 = 1.716

v̄−1 = v̄−1 + v̄1
∂v1
∂v−1

= v̄−1 + v̄1/v−1 = 5.5

v̄0 = v̄0 + v̄2
∂v2
∂v0

= v̄0 + v̄2 × v−1 = 1.716

v̄−1 = v̄2
∂v2
∂v−1

= v̄2 × v0 = 5

v̄0 = v̄3
∂v3
∂v0

= v̄3 × cos v0 = −0.284
v̄2 = v̄4

∂v4
∂v2

= v̄4 × 1 = 1

v̄1 = v̄4
∂v4
∂v1

= v̄4 × 1 = 1

v̄3 = v̄5
∂v5
∂v3

= v̄5 × (−1) = −1
v̄4 = v̄5

∂v5
∂v4

= v̄5 × 1 = 1

v̄5 = ȳ = 1
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Reverse Mode of AD VI

Earlier in the forward process we have

y = v5

Thus in the reverse mode, we begin with

v̄5 =
∂y

∂v5
=

∂y

∂y
= 1
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Reverse Mode of AD VII

Then because

v4 = ln x1 + x1x2

affects y only through v5, we have

∂y

∂v4
=

∂y

∂v5

∂v5
∂v4

= v̄5
∂v5
∂v4

= v̄5 × 1
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Reverse Mode of AD VIII

We continue the process until at the end

∂y

∂x1
= x̄1 = v̄−1

and
∂y

∂x2
= x̄2 = v̄0

are obtained
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Reverse Mode of AD IX

Note that
∂y

∂x1
and

∂y

∂x2

are obtained at the same time

Therefore, an advantage of the reverse mode is that
it is suitable for a function with many input variables

This is useful for calculating the gradient

∇f =
[
∂y
∂x1
· · · ∂y

∂xn

]T
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Reverse Mode of AD X

For general
f : Rn → Rm

the Jacobian calculation needs m passes for the m
rows: 

∂y1
∂x1
· · · ∂y1

∂xn
. . .

∂ym
∂x1
· · · ∂ym

∂xn


Thus reverse model is better than forward if

m≪ n
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Transposed Jacobian-vector Products I

Earlier we talked about Jacobian-vector products

In optimization another commonly used operation is
the

transposed Jacobian-vector product

That is

JT r =


∂y1
∂x1
· · · ∂ym

∂x1
. . .

∂y1
∂xn
· · · ∂ym

∂xn


 r1
...
rm


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Transposed Jacobian-vector Products II

By initializing

ȳ = r

we can calculate JT r in one pass
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AD and Back-propagation I

The network itself is a computational graph

The input of a layer affects ξi only through the
output

See the following derivation discussed before

∂ξi
∂vec(Sm,i)T

=
∂ξi

∂vec(σ(Sm,i))T
∂vec(σ(Sm,i))

∂vec(Sm,i)T
(1)

=
∂ξi

∂vec(Zm+1,i)T
∂vec(Zm+1,i)

∂vec(σ(Sm,i))T
∂vec(σ(Sm,i))

∂vec(Sm,i)T
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AD and Back-propagation II

In (1), Sm,i affects ξi only through σ(Sm,i)

Thus back-propagation is a special case of the
reverse mode of automatic differentiation
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