Reverse Mode of AD I

- Consider

$$
\bar{v}_{i}=\frac{\partial y_{j}}{\partial v_{i}}
$$

- Note that earlier we considered

$$
\dot{v}_{i}=\frac{\partial v_{i}}{\partial x_{1}}
$$

- Consider again

$$
f\left(x_{1}, x_{2}\right)=\ln x_{1}+x_{1} x_{2}-\sin x_{2}
$$

- Let us check the variable v_{0}

Reverse Mode of AD II

- From the computational graph

v_{0} can affect y through affecting v_{2} and v_{3}

Reverse Mode of AD III

- Thus

$$
\frac{\partial y}{\partial v_{0}}=\frac{\partial y}{\partial v_{2}} \frac{\partial v_{2}}{\partial v_{0}}+\frac{\partial y}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{0}}
$$

or

$$
\bar{v}_{0}=\bar{v}_{2} \frac{\partial v_{2}}{\partial v_{0}}+\bar{v}_{3} \frac{\partial v_{3}}{\partial v_{0}}
$$

- In the practical implementation shown later, this is done in two steps

$$
\begin{aligned}
& \bar{v}_{0} \leftarrow \bar{v}_{3} \frac{\partial v_{3}}{\partial v_{0}} \\
& \bar{v}_{0} \leftarrow \bar{v}_{0}+\bar{v}_{2} \frac{\partial v_{2}}{\partial v_{0}}
\end{aligned}
$$

Reverse Mode of AD IV

- They are part of the following sequence of reverse computation:

Reverse Mode of AD V

$$
\left\{\begin{array}{llll}
\bar{x}_{1} & =\bar{v}_{-1} & & =5.5 \\
\bar{x}_{2} & =\bar{v}_{0} & & =1.716 \\
\hline \bar{v}_{-1} & =\bar{v}_{-1}+\bar{v}_{1} \frac{\partial v_{1}}{\partial v_{-1}} & =\bar{v}_{-1}+\bar{v}_{1} / v_{-1} & =5.5 \\
\bar{v}_{0} & =\bar{v}_{0}+\bar{v}_{2} \frac{\partial v_{2}}{\partial v_{0}} & =\bar{v}_{0}+\bar{v}_{2} \times v_{-1} & =1.716 \\
\bar{v}_{-1} & =\bar{v}_{2} \frac{\partial v_{2}}{\partial v_{-1}} & =\bar{v}_{2} \times v_{0} & =5 \\
\bar{v}_{0} & =\bar{v}_{3} \frac{\partial v_{3}}{\partial v_{0}} & =\bar{v}_{3} \times \cos v_{0} & =-0.284 \\
\bar{v}_{2} & =\bar{v}_{4} \frac{\partial v_{4}}{\partial v_{2}} & =\bar{v}_{4} \times 1 & =1 \\
\bar{v}_{1} & =\bar{v}_{4} \frac{\partial v_{4}}{\partial v_{1}} & =\bar{v}_{4} \times 1 & =1 \\
\bar{v}_{3} & =\bar{v}_{5} \frac{\partial_{5}}{\partial v_{3}} & =\bar{v}_{5} \times(-1) & =-1 \\
\bar{v}_{4} & =\bar{v}_{5} \frac{\partial v_{5}}{\partial v_{4}} & =\bar{v}_{5} \times 1 & =1 \\
\hline \bar{v}_{5} & =\bar{y} & =1 &
\end{array}\right.
$$

Reverse Mode of AD VI

- Earlier in the forward process we have

$$
y=v_{5}
$$

- Thus in the reverse mode, we begin with

$$
\bar{v}_{5}=\frac{\partial y}{\partial v_{5}}=\frac{\partial y}{\partial y}=1
$$

Reverse Mode of AD VII

- Then because

$$
v_{4}=\ln x_{1}+x_{1} x_{2}
$$

affects y only through v_{5}, we have

$$
\begin{aligned}
\frac{\partial y}{\partial v_{4}} & =\frac{\partial y}{\partial v_{5}} \frac{\partial v_{5}}{\partial v_{4}} \\
& =\bar{v}_{5} \frac{\partial v_{5}}{\partial v_{4}}=\bar{v}_{5} \times 1
\end{aligned}
$$

Reverse Mode of AD VIII

- We continue the process until at the end

$$
\frac{\partial y}{\partial x_{1}}=\bar{x}_{1}=\bar{v}_{-1}
$$

and

$$
\frac{\partial y}{\partial x_{2}}=\bar{x}_{2}=\bar{v}_{0}
$$

are obtained

Reverse Mode of AD IX

- Note that

$$
\frac{\partial y}{\partial x_{1}} \text { and } \frac{\partial y}{\partial x_{2}}
$$

are obtained at the same time

- Therefore, an advantage of the reverse mode is that it is suitable for a function with many input variables
- This is useful for calculating the gradient

$$
\nabla f=\left[\begin{array}{lll}
\frac{\partial y}{\partial x_{1}} & \cdots & \frac{\partial y}{\partial x_{n}}
\end{array}\right]^{T}
$$

Reverse Mode of AD X

- For general

$$
f: R^{n} \rightarrow R^{m}
$$

the Jacobian calculation needs m passes for the m rows:

$$
\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
& \ddots & \\
\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
$$

- Thus reverse model is better than forward if

$$
m \ll n
$$

Transposed Jacobian-vector Products I

- Earlier we talked about Jacobian-vector products
- In optimization another commonly used operation is the

transposed Jacobian-vector product

- That is

$$
J^{T} \boldsymbol{r}=\left[\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}} \\
& \ddots & \\
\frac{\partial y_{1}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{m}
\end{array}\right]
$$

Transposed Jacobian-vector Products II

- By initializing

$$
\bar{y}=r
$$

we can calculate $J^{T} \boldsymbol{r}$ in one pass

$A D$ and Back-propagation

- The network itself is a computational graph
- The input of a layer affects ξ_{i} only through the output
- See the following derivation discussed before

$$
\begin{align*}
& \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
= & \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)^{T}} \frac{\partial \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \\
= & \frac{\partial \xi_{i}}{\partial \operatorname{vec}\left(Z^{m+1, i}\right)^{T}} \frac{\partial \operatorname{vec}\left(Z^{m+1, i}\right)}{\partial \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)^{T}} \frac{\partial \operatorname{vec}\left(\sigma\left(S^{m, i}\right)\right)}{\partial \operatorname{vec}\left(S^{m, i}\right)^{T}} \tag{1}
\end{align*}
$$

AD and Back-propagation II

$\ln (1), S^{m, i}$ affects ξ_{i} only through $\sigma\left(S^{m, i}\right)$

- Thus back-propagation is a special case of the reverse mode of automatic differentiation

