Most materials in the discussion here follow from the paper (Baydin et al., 2018)

Derivative Calculation I

- From Baydin et al. (2018) there are four types of methods
- Deriving the explicit form

Example: consider

$$
f\left(x_{1}, x_{2}\right)=\ln x_{1}+x_{1} x_{2}-\sin x_{2}
$$

We calculate

$$
\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}=\frac{1}{x_{1}}+x_{2}
$$

Derivative Calculation II

- Numerical way by finite difference

$$
\frac{f(x+h)-f(x)}{h}
$$

with a small h

- Symbolic way: using tools to get an explicit form
- Automatic differentiation (AD): topic of this set of slides
- Back-propagation is a special case of automatic differentiation

Derivative Calculation III

- So you can roughly guess that in automatic differentiation, chain rules are repeated applied

Forward Mode of AD I

- Consider the function

$$
f\left(x_{1}, x_{2}\right)=\ln x_{1}+x_{1} x_{2}-\sin x_{2}
$$

- Forward mode to compute the function value

$$
\left\lvert\, \begin{array}{lll}
v_{-1} & =x_{1} & =2 \\
v_{0} & =x_{2} & =5 \\
\hline v_{1} & =\ln v_{-1} & =\ln 2 \\
v_{2} & =v_{-1} \times v_{0} & =2 \times 5 \\
v_{3} & =\sin v_{0} & =\sin 5 \\
v_{4} & =v_{1}+v_{2} & =0.693+10 \\
v_{5} & =v_{4}-v_{3} & =10.693+0.959 \\
\hline y & =v_{5} & \\
y
\end{array}\right.
$$

Forward Mode of AD II

- See also the computational graph

Forward Mode of AD III

- Example of Forward Primal Trace (to be discussed)

Forward Mode of AD IV

- Each v_{i} comes from a simple operation
- For computing

$$
\frac{\partial f}{\partial x_{1}}
$$

we let

$$
\dot{v}_{i}=\frac{\partial v_{i}}{\partial x_{1}}
$$

and apply the chain rule

- Forward derivative calculation:

Forward Mode of AD V

$$
\left\lvert\, \begin{array}{rll}
\dot{v}_{-1}=\dot{x}_{1} & =1 \\
\dot{v}_{0} & =\dot{x}_{2} & =0 \\
\hline \dot{v}_{1} & =\dot{v}_{-1} / v_{-1} & =1 / 2 \\
\dot{v}_{2} & =\dot{v}_{-1} \times v_{0}+\dot{v}_{0} \times v_{-1} & =1 \times 5+0 \times 2 \\
\dot{v}_{3} & =\dot{v}_{0} \times \cos v_{0} & \\
\dot{v}_{4}=\dot{v}_{1}+\dot{v}_{2} & & =0.5+5 \\
\dot{v}_{5} & =\dot{v}_{4}-\dot{v}_{3} & =5.5-0 \\
\hline \dot{y} & =\dot{v}_{5} & =5.5
\end{array}\right.
$$

Forward Mode of AD VI

- For example,

$$
\begin{aligned}
v_{1} & =\ln v_{-1} \\
\frac{\partial v_{1}}{\partial x_{1}} & =\frac{1}{v_{-1}} \times \frac{\partial v_{-1}}{\partial x_{1}} \\
& =\frac{\dot{v}_{-1}}{v_{-1}}
\end{aligned}
$$

Jacobian Calculation by Forward Mode I

- Consider

$$
f: R^{n} \rightarrow R^{m}
$$

so that

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=f\left(x_{1}, \ldots, x_{n}\right)
$$

- The Jacobian is

$$
\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
& \ddots & \\
\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
$$

Jacobian Calculation by Forward Mode II

- If we initialize

$$
\dot{x}=[\underbrace{0, \ldots, 0}_{i-1}, 1,0, \ldots, 0]^{T}
$$

then

$$
\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x_{i}} \\
\vdots \\
\frac{\partial y_{m}}{\partial x_{i}}
\end{array}\right]
$$

can be calculated in one forward pass

Jacobian Calculation by Forward Mode III

- But this means we need n forward passes for the whole Jacobian
- In many optimization methods we do not need the whole Jacobian. Instead we need
Jacobian-vector products
- That is,

$$
\boldsymbol{J} \boldsymbol{r}=\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
& \ddots & \\
\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right]
$$

Jacobian Calculation by Forward Mode IV

- This can be calculated in one pass by initializing with $\dot{x}=r$
- Now \dot{v}_{i} is changed from

$$
\dot{v}_{i}=\frac{\partial v_{i}}{\partial x_{1}}
$$

to

$$
\dot{v}_{i}=\frac{\partial v_{i}}{\partial x_{1}} r_{1}+\cdots+\frac{\partial v_{i}}{\partial x_{n}} r_{n}
$$

Jacobian Calculation by Forward Mode V

- For example, if

$$
v_{2}=v_{-1} \times v_{0}
$$

then we still have

$$
\dot{v}_{2}=\dot{v}_{-1} \times v_{0}+\dot{v}_{0} \times v_{-1}
$$

- We will see examples of using Jacobian-vector products later in discussing Newton methods

Jacobian Calculation by Forward Mode VI

- The discussion shows that the forward mode is efficient for

$$
f: R \rightarrow R^{m}
$$

by one pass

- But for the other extreme

$$
f: R^{n} \rightarrow R,
$$

to calculate the gradient

$$
\nabla f=\left[\begin{array}{lll}
\frac{\partial y}{\partial x_{1}} & \cdots & \frac{\partial y}{\partial x_{n}}
\end{array}\right]^{T}
$$

we need n passes

Jacobian Calculation by Forward Mode VII

- This is not efficient
- Subsequently we will consider another way for AD: reverse mode

References I

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research, 18(153):1-43, 2018.

Acknowledgments

- Cheng-Hung Liu helped to draw the computational graph and prepare the tables

