Recall that the NN optimization problem is

$$\min_{\theta} f(\theta)$$

where

$$f(\theta) = \frac{1}{2C} \theta^T \theta + \frac{1}{l} \sum_{i=1}^{l} \xi(z^{L+1,i}(\theta); y^i, Z^{1,i})$$

Let’s simplify the loss part

$$f(\theta) = \frac{1}{2C} \theta^T \theta + \frac{1}{l} \sum_{i=1}^{l} \xi(\theta; y^i, Z^{1,i})$$

The issue now is how to do the minimization
Gradient Descent

- This is one of the most used optimization method
- First-order approximation

\[f(\theta + \Delta \theta) \approx f(\theta) + \nabla f(\theta)^T \Delta \theta, \]

where

\[\nabla f(\theta) = \begin{bmatrix} \frac{\partial f(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial f(\theta)}{\partial \theta_n} \end{bmatrix} \]

is the gradient of \(f(\theta) \)
Gradient Descent II

Solve

$$\min_{\Delta \theta} \nabla f(\theta)^T \Delta \theta$$

subject to $\|\Delta \theta\| = 1$ (1)

to find a direction $\Delta \theta$

The constraint $\|\Delta \theta\| = 1$ is needed. Otherwise, the above sub-problem goes to $-\infty$

The solution of (1) is

$$\Delta \theta = -\frac{\nabla f(\theta)}{\|\nabla f(\theta)\|}$$ (2)
Gradient Descent III

- This is called the **steepest descent direction**
- However, because we only consider an approximation

\[f(\theta + \Delta \theta) \approx f(\theta) + \nabla f(\theta)^T \Delta \theta \]

we may not have the strict decrease of the function value
- That is,

\[f(\theta) < f(\theta + \Delta \theta) \]

may occur
Gradient Descent IV

But in general we need the descent property to get the convergence.

We have

\[f(\theta + \alpha \Delta \theta) = f(\theta) + \alpha \nabla f(\theta)^T \Delta \theta + \frac{1}{2} \alpha^2 \Delta \theta^T \nabla^2 f(\theta) \Delta \theta + \cdots, \]

where

\[\nabla^2 f(\theta) = \begin{bmatrix} \frac{\partial^2 f}{\partial \theta_1 \partial \theta_1} & \cdots & \frac{\partial^2 f}{\partial \theta_1 \partial \theta_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial \theta_n \partial \theta_1} & \cdots & \frac{\partial^2 f}{\partial \theta_n \partial \theta_n} \end{bmatrix} \]
Gradient Descent V

is the Hessian of $f(\theta)$

- If

$$\nabla f(\theta)^T \Delta \theta < 0,$$

then a small enough α can ensure

$$f(\theta + \alpha \Delta \theta) < f(\theta)$$

- Thus in optimization for any direction (not necessarily the steepest descent direction), it is called a descent direction if

$$\nabla f(\theta)^T \Delta \theta < 0$$
The direction chosen in (2) is a descent direction:

$$-\nabla f(\theta)^T \frac{\nabla f(\theta)}{\|\nabla f(\theta)\|} < 0.$$
We have seen that we need a step size α such that

$$f(\theta + \alpha \Delta \theta) < f(\theta)$$

In optimization this is called a line search procedure.

Exact line search

$$\min_{\alpha} f(\theta + \alpha \Delta \theta)$$

This is a one-dimensional optimization problem.

In practice, people use backtracking line search.
We check

\[\alpha = 1, \beta, \beta^2, \ldots \]

with \(\beta \in (0, 1) \) until

\[f(\theta + \alpha \Delta \theta) < f(\theta) + \nu \nabla f(\theta)^T (\alpha \Delta \theta) \]

Here

\[\nu \in (0, \frac{1}{2}) \]

The convergence is well established.
For example, if the steepest descent direction is used with the backtracking line search, Corollary 1.1.2 at https://sites.math.washington.edu/~burke/crs/408/notes/nlp/line.pdf shows that for every limit point $\bar{\theta}$ of a convergent subsequence of $\{\theta^k\}$, where k is the iteration index, we have

$$\nabla f(\bar{\theta}) = 0$$

This means we can reach a stationary point of a non-convex problem.
The back-tracking line search procedure is simple and useful in practice.
Practical Use of Gradient Descent I

- It is known that the convergence is slow for difficult problems.
- Thus in many optimization applications, methods of using second-order information (e.g., quasi Newton or Newton) are preferred.

\[
f(\theta + \Delta \theta) \approx f(\theta) + \nabla f(\theta)^T \Delta \theta + \frac{1}{2} \Delta \theta^T \nabla^2 f(\theta) \Delta \theta
\]

- These methods have fast final convergence.
- An illustration (modified from Tsai et al. (2014))
Practical Use of Gradient Descent II

Slow final convergence Fast final convergence

But fast final convergence may not be needed in machine learning
The reason is that an optimal solution θ^* may not lead to the best model.

We will discuss such issues again later.