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.
Why CNN? |

@ There are many types of neural networks
@ They are suitable for different types of problems

@ Note that neural networks may not be always better
than other learning methods

@ For example, fully-connected networks were
evalueated for general classification data (e.g., data
from UCI machine learning repository)

@ They are not consistently better than random forests
or SVM; see the comparisons (Meyer et al., 2003;
Fernandez-Delgado et al., 2014; Wang et al., 2018).
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.
Why CNN? I

@ We are interested in CNN because it's shown to be
significantly better than others on image data
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N
Convolutional Neural Networks |

@ Consider a K-class classification problem with
training data

(y',Z"), i=1,...,1.

y': label vector Z%': input image
e If ZV is in class k, then

y'=1[0,...,0,1,0,...,0]" € RX.

k—1

@ CNN maps each image Z'' to y'
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Convolutional Neural Networks ||

@ Typically, CNN consists of multiple convolutional
layers followed by fully-connected layers.

@ Input and output of a convolutional layer are
assumed to be images.
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-
Convolutional Layers |
@ For the current layer, let the input be an image
Z":a" x b x d".
PR height, b": width, and d'™: #channels.
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-
Convolutional Layers |l

The goal is to generate an output image
Zout,i

of d°* channels of a°'t x b°“' images.
e Consider d°'* filters.
e Filter j € {1,...,d°"} has dimensions

hx hxd".
W:{,1,1 W{,h,l W{,I,di" W{,h,di“
W} Whh 1 Wi 1 i Wy 4 i

[] ..
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-
Convolutional Layers I

h: filter height/width (layer index omitted)
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@ To compute the jth channel of output, we scan the

input from top-left to bottom-right to obtain the

sub-images of size h x h x d™
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-
Convolutional Layers |V

@ We then calculate the inner product between each
sub-image and the jth filter

@ The idea is that this inner product may extract local
information of the sub-image

@ For example, if we start from the upper left corner of
the input image, the first sub-image of channel d is

i i
211d - “hd

i i
Zh1d -+ Zhhd
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-
Convolutional Layers V

We then calculate

. i i ' '
dr Z1d - “hd W{,l,d e W{,h,d
E e , T —|—bj,

_ i i
=L N 2Zh1d -+ Zhhd Whig -+ Whpd
(1)

7

where (-, -) means the sum of component-wise
products between two matrices.

@ This value becomes the (1, 1) position of the
channel j of the output image.

Chih-Jen Lin (National Taiwan Univ.) 10/15



-
Convolutional Layers VI

@ Next, we use other sub-images to produce values in
other positions of the output image.

@ Let the stride s be the number of pixels vertically or
horizontally to get sub-images.

@ For the (2,1) position of the output image, we
move down s pixels vertically to obtain the following
sub-image:

i i
Zi4s1d - “l+shd

i i
Zhisld - Zhishd
TS



Convolutional Layers VI

@ The (2,1) position of the channel j of the output

image is

. i i ' '
dr Z4s1d - Zlishd Wi,l,d W:{,md
Z 7

— i i ' '
=1\ Zhis1d - Zhpshdl  [Whig oo Wipd
+ b;.
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-
Convolutional Layers VIII

@ The output image size a®'* and b°“! are respectively
numbers that vertically and horizontally we can
move the filter

in_h in_h
d J+1, bOUt:Lb

out L

J+1 ()

@ Rationale of (3): vertically last row of each
sub-image is

h,h+s,....,h+As < a"
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-
Convolutional Layers X

Thus
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