We have discussed sub-sampled Newton method to address the memory issue.

Another technique to address the memory difficulty will be discussed later.

Now we discuss several other considerations to make Newton methods practical.
Besides backtracking line search, in optimization another way to adjust the direction is the Levenberg-Marquardt method (Levenberg, 1944; Marquardt, 1963)

It modifies the linear system to

\[(G^S + \lambda \mathcal{I})d = -\nabla f(\theta)\]

The value \(\lambda\) is decided by how good the function reduction is.

It is updated by the following settings.
If $\theta + d$ is the next iterate after line search, we define

$$\rho = \frac{f(\theta + d) - f(\theta)}{\nabla f(\theta)^T d + \frac{1}{2} d^T G^S d}$$

as the ratio of

- actual function reduction
- predicted reduction
By using ρ, the parameter λ_{next} for the next iteration is decided by

$$
\lambda_{next} = \begin{cases}
\lambda \times \text{drop} & \rho > \rho_{\text{upper}}, \\
\lambda & \rho_{\text{lower}} \leq \rho \leq \rho_{\text{upper}}, \\
\lambda \times \text{boost} & \text{otherwise},
\end{cases}
$$

where

$$\text{drop} < 1, \text{boost} > 1$$

are given constants.

In our code you can see
Levenberg-Marquardt Method IV

\[
\text{param.drop} = \frac{2}{3};
\]

\[
\text{param.boost} = \frac{3}{2};
\]

and

\[
\rho_{\text{upper}} = 0.75, \rho_{\text{lower}} = 0.25
\]

- If the function-value reduction is not satisfactory, \(\lambda \) is enlarged and the resulting direction is closer to the negative gradient.

- In optimization practice, if backtracking line search has been applied, usually there is no need to apply this LM method.
However, some past works (e.g., Martens, 2010; Wang et al., 2018) on fully-connected networks seem to show that applying both is useful.

The use of LM in training NN is still an issue to be investigated.
Recall in gradient evaluation the following main steps are conducted:

\[\Delta \leftarrow \text{mat}(\text{vec}(\Delta)^T P_{\text{pool}}) \]

\[\frac{\partial \xi_i}{\partial W^m} = \Delta \cdot \phi(\text{pad}(Z^{m,i}))^T \]

\[\Delta \leftarrow \text{vec}\left(\left((W^m)^T \Delta\right)^T P_{\phi}^m P_{\text{pad}}^m\right) \]

\[\Delta \leftarrow \Delta \odot I[Z^{m,i}] \]
Clearly we must store Z_i, or even $\phi(\text{pad}(Z^{m,i}), \forall i$ after the forward process.

This is fine for stochastic gradient as we use a small batch of data.

However, for Newton we need the full gradient so we can check the sufficient decrease condition.

The memory cost is then

$\propto \# \text{ total data}$

This is not feasible.
Fortunately we can calculate the gradient by the sum of sub-gradients

\[
\frac{\partial f}{\partial W_m} = \frac{1}{C} W_m + \frac{1}{l} \sum_{i=1}^{l} \frac{\partial \xi_i}{\partial W_m},
\]

(1)

\[
\frac{\partial f}{\partial b_m} = \frac{1}{C} b_m + \frac{1}{l} \sum_{i=1}^{l} \frac{\partial \xi_i}{\partial b_m}.
\]

(2)

Thus we can split the index set \{1, \ldots, l\} of data to, for example, \(R\) equal-sized subsets \(S_1, \ldots, S_R\)
We sequentially calculate the result corresponding to each subset and accumulate them for the final output.

For example, to have $Z^{m,i}$ needed in the backward process for calculating the gradient, we must store them after the forward process for function evaluation.

By using a subset, only $Z^{m,i}$ with i in this subset are stored, so the memory usage can be dramatically reduced.
See the Newton method code at https://github.com/cjlin1/simpleNN/blob/master/MATLAB/opt/newton.m
Discussion I

- We have known that at each iteration
 \[G^S = \frac{1}{C^*} \mathcal{I} + \frac{1}{|S|} \sum_{i \in S} (J^i)^T B^i J^i \]
 is considered
- The remaining issues are
 - How to calculate \(J^i, \forall i \in S \)
 - How to calculate
 \[(J^i)^T (B^i (J^i v)) \]