
Summary of Operations I

We show convolutional layers only and the bias term
is omitted

Also we assume that RELU activation and max
pooling are used

Operations in order

∂ξi

∂vec(Sm,i)T

=

(
∂ξi

∂vec(Zm+1,i)T
⊙ vec(I [Zm+1,i ])T

)
Pm,i
pool.

(1)

Chih-Jen Lin (National Taiwan Univ.) 1 / 16



Summary of Operations II
∂ξi
∂Wm

=
∂ξi
∂Sm,i

ϕ(pad(Zm,i))T (2)

∂ξi

∂vec(Zm,i)T
= vec

(
(Wm)T

∂ξi
∂Sm,i

)T

Pm
ϕ P

m
pad, (3)

Note that after (1), we change

a vector
∂ξi

∂vec(Sm,i)T
to a matrix

∂ξi
∂Sm,i

because in (2) and (3), matrix form is needed

In (1), information of the next layer is used.

Chih-Jen Lin (National Taiwan Univ.) 2 / 16



Summary of Operations III

Instead we can do

∂ξi

∂vec(Zm,i)T
⊙ vec(I [Zm,i ])T

in the end of the current layer

This becomes the information passed to the
previous layer

Then only information in the current layer is used

Chih-Jen Lin (National Taiwan Univ.) 3 / 16



Summary of Operations IV

Finally an implementation for one convolutional
layer:

∆← mat(vec(∆)TPm,i
pool)

∂ξi
∂Wm

= ∆ · ϕ(pad(Zm,i))T

∆← vec
(
(Wm)T∆

)T
Pm
ϕ P

m
pad

∆← ∆⊙ I [Zm,i ]

A sample segment of code in MATLAB

Chih-Jen Lin (National Taiwan Univ.) 4 / 16



Summary of Operations V

for m = LC : -1 : 1

dXidS = reshape(vTP(param, model, net, m,

dXidS, ’pool_gradient’),

model.ch_input(m+1), []);

phiZ = padding_and_phiZ(model, net, m);

net.dlossdW{m} = dXidS*phiZ’;

net.dlossdb{m} = dXidS*ones(model.wd_conv(m)*

model.ht_conv(m)*S_k, 1);

if m > 1

Chih-Jen Lin (National Taiwan Univ.) 5 / 16



Summary of Operations VI

v = model.weight{m}’ * dXidS;

dXidS = vTP(model, net, m, num_data, v,

’phi_gradient’);

% vTP_pad

dXidS = reshape(dXidS, model.ch_input(m),

model.ht_pad(m),

model.wd_pad(m), []);

p = model.wd_pad_added(m);

dXidS = dXidS(:, p+1:p+model.ht_input(m),

p+1:p+model.wd_input(m), :);

Chih-Jen Lin (National Taiwan Univ.) 6 / 16



Summary of Operations VII

% activation function

dXidS = reshape(dXidS, model.ch_input(m),

[]) .*(net.Z{m} > 0);

end

Chih-Jen Lin (National Taiwan Univ.) 7 / 16



Storing ϕ(pad(Zm,i))

From the above summary, we see that

ϕ(pad(Zm,i))

is calculated twice in both forward and backward
processes

If this expansion is expensive, we can store it

But memory is a concern as this is a huge matrix

So this setting of storing ϕ(pad(Zm,i)) trades space
for time. It’s more suitable for CPU environments

Chih-Jen Lin (National Taiwan Univ.) 8 / 16



Complexity I

To see where the computational bottleneck is, it’s
important to check the complexity of major
operations

Assume l is the number of data (for the case of
calculating the whole gradient)

For stochastic gradient, l becomes the size of a
mini-batch

Chih-Jen Lin (National Taiwan Univ.) 9 / 16



Complexity II

Forward:

Sm,i =Wmmat(Pm
ϕ P

m
padvec(Z

m,i))

=Wmϕ(pad(Zm,i))

ϕ(pad(Zm,i)) : O(l × hmhmdmamconvb
m
conv) (4)

Wmϕ(·) : O(l × dm+1 hmhmdm amconvb
m
conv)

Zm+1,i = mat(Pm,i
poolvec(σ(S

m,i)))

O(l × dm+1amconvb
m
conv)

=O(l × hmhmdm+1am+1bm+1)

Chih-Jen Lin (National Taiwan Univ.) 10 / 16



Complexity III

See also (4) as for pooling we also have a ϕ to
generate sub-images

Backward:

∆← mat(vec(∆)TPm,i
pool)

Size of ∆ same as Sm,i so cost is

O(l × dm+1amconvb
m
conv)

∂ξi
∂Wm

= ∆ϕ(pad(Zm,i))T

Chih-Jen Lin (National Taiwan Univ.) 11 / 16



Complexity IV

O(l × dm+1 amconvb
m
conv hmhmdm).

∆← vec
(
(Wm)T∆

)T
Pm
ϕ P

m
pad

(Wm)T∆ : O(l × hmhmdm dm+1 amconvb
m
conv)

vec(·)Pm
ϕ : O(l × hmhmdmamconvb

m
conv) (5)

For (5) we convert a matrix of

hmhmdm × amconvb
m
conv

to a smaller matrix

dm × ampadb
m
pad

Chih-Jen Lin (National Taiwan Univ.) 12 / 16



Complexity V

We see that matrix-matrix products are the
bottleneck

If so, why check others?

The issue is that matrix-matrix products may be
better optimized

Chih-Jen Lin (National Taiwan Univ.) 13 / 16



Discussion: Pooling and Differentiability I

Recall we have

Zm+1,i = mat(Pm,i
poolvec(σ(S

m,i)))dm+1×am+1bm+1,

We note that
Pm,i
pool

is not a constant 0/1 matrix

It depends on σ(Sm,i) to decide the positions of 0
and 1.

Chih-Jen Lin (National Taiwan Univ.) 14 / 16



Discussion: Pooling and Differentiability II

Thus like the RELU activation function, max
pooling is another place to cause that f (θ) is not
differentiable

However, it is almost differentiable around the
current point

Consider

f (A) = max

([
A11 A12

A21 A22

])
and

A11 > A12,A21,A22

Chih-Jen Lin (National Taiwan Univ.) 15 / 16



Discussion: Pooling and Differentiability III

Then

∇f (A) =


1
0
0
0

 at A =

[
A11 A12

A21 A22

]

This explains why we can use Pm,i
pool in function and

gradient evaluations

Chih-Jen Lin (National Taiwan Univ.) 16 / 16


