Most materials in the discussion here follow from the paper (Baydin et al., 2018)
From Baydin et al. (2018) there are four types of methods

Deriving the explicit form

Example: consider

\[f(x_1, x_2) = \ln x_1 + x_1 x_2 - \sin x_2 \]

We calculate

\[\frac{\partial f(x_1, x_2)}{\partial x_1} = \frac{1}{x_1} + x_2 \]
Derivative Calculation II

- Numerical way by finite difference
 \[\frac{f(x + h) - f(x)}{h} \]
 with a small \(h \)
- Symbolic way: using tools to get an explicit form
- Automatic differentiation (AD): topic of this set of slides
- Back-propagation is a special case of automatic differentiation
So you can roughly guess that in automatic differentiation, chain rules are repeated applied.
Consider the function

\[f(x_1, x_2) = \ln x_1 + x_1 x_2 - \sin x_2 \]

Forward mode to compute the function value

\[
\begin{align*}
v_{-1} &= x_1 &= 2 \\
v_0 &= x_2 &= 5 \\
v_1 &= \ln v_{-1} &= \ln 2 \\
v_2 &= v_{-1} \times v_0 &= 2 \times 5 \\
v_3 &= \sin v_0 &= \sin 5 \\
v_4 &= v_1 + v_2 &= 0.693 + 10 \\
v_5 &= v_4 - v_3 &= 10.693 + 0.959 \\
y &= v_5 &= 11.652
\end{align*}
\]
Forward Mode of AD II

- See also the computational graph

\[v_0 \xrightarrow{\text{x}_1} v_{-1} \xrightarrow{} v_1 \xrightarrow{} v_4 \xrightarrow{} v_5 \xrightarrow{} f(x_1, x_2) \]
Each v_i comes from a simple operation

For computing $\frac{\partial f}{\partial x_1}$ we let

$$\dot{v}_i = \frac{\partial v_i}{\partial x_1}$$

and apply the chain rule

Forward derivative calculation:
Forward Mode of AD IV

\[
\begin{align*}
\dot{\nu}_1 &= \dot{x}_1 = 1 \\
\dot{\nu}_0 &= \dot{x}_2 = 0 \\
\dot{\nu}_1 &= \dot{\nu}_1 / \nu_1 = 1/2 \\
\dot{\nu}_2 &= \dot{\nu}_1 \times \nu_0 + \dot{\nu}_0 \times \nu_1 = 1 \times 5 + 0 \times 2 \\
\dot{\nu}_3 &= \dot{\nu}_0 \times \cos \nu_0 = 0 \times \cos 5 \\
\dot{\nu}_4 &= \dot{\nu}_1 + \dot{\nu}_2 = 0.5 + 5 \\
\dot{\nu}_5 &= \dot{\nu}_4 - \dot{\nu}_3 = 5.5 - 0 \\
\dot{y} &= \dot{\nu}_5 = 5.5
\end{align*}
\]
For example,

\[v_1 = \ln v_{-1} \]

\[\frac{\partial v_1}{\partial x_1} = \frac{1}{v_{-1}} \times \frac{\partial v_{-1}}{\partial x_1} \]

\[\dot{v}_{-1} = \frac{\dot{v}_{-1}}{v_{-1}} \]
Consider

\[f : \mathbb{R}^n \rightarrow \mathbb{R}^m \]

so that

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_m
\end{bmatrix} = f(x_1, \ldots, x_n)
\]

The Jacobian is

\[
\begin{bmatrix}
 \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\
 \vdots & \ddots & \vdots \\
 \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n}
\end{bmatrix}
\]
If we initialize

\[\dot{x} = [0, \ldots, 0, 1, 0, \ldots, 0]^T \]

then

\[
\begin{bmatrix}
\frac{\partial y_1}{\partial x_i} \\
\vdots \\
\frac{\partial y_m}{\partial x_i}
\end{bmatrix}
\]

can be calculated in one forward pass.
But this means we need n forward passes for the whole Jacobian.

In many optimization methods we do not need the whole Jacobian. Instead we need Jacobian-vector products.

That is,

$$Jr = \begin{bmatrix}
\frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n}
\end{bmatrix} \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix}$$
This can be calculated in one pass by initializing with $\dot{x} = r$

We will see examples of using Jacobian-vector products later in discussing Newton methods.

The discussion shows that the forward mode is efficient for

$$f : \mathbb{R} \rightarrow \mathbb{R}^m$$

by one pass.
But for the other extreme

\[f : \mathbb{R}^n \rightarrow \mathbb{R}, \]

to calculate the gradient

\[\nabla f = \left[\frac{\partial y}{\partial x_1} \ldots \frac{\partial y}{\partial x_n} \right]^T \]

we need \(n \) passes

- This is not efficient
- Subsequently we will consider another way for AD: reverse mode
Acknowledgments

- Cheng-Hung Liu helped to draw the computational graph and prepare the tables