
Most materials in the discussion here follow from the
paper (Baydin et al., 2018)
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Derivative Calculation I

From Baydin et al. (2018) there are four types of
methods

Deriving the explicit form
Example: consider

f (x1, x2) = ln x1 + x1x2 − sin x2

We calculate

∂f (x1, x2)

∂x1
=

1

x1
+ x2
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Derivative Calculation II

Numerical way by finite difference

f (x + h)− f (x)

h

with a small h
Symbolic way: using tools to get an explicit
form
Automatic differentiation (AD): topic of this
set of slides

Back-propagation is a special case of automatic
differentiation
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Derivative Calculation III

So you can roughly guess that in automatic
differentiation, chain rules are repeated applied
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Forward Mode of AD I

Consider the function

f (x1, x2) = ln x1 + x1x2 − sin x2

Forward mode to compute the function value
v−1 = x1 = 2
v0 = x2 = 5

v1 = ln v−1 = ln 2
v2 = v−1 × v0 = 2× 5
v3 = sin v0 = sin 5
v4 = v1 + v2 = 0.693 + 10
v5 = v4 − v3 = 10.693 + 0.959

y = v5 = 11.652
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Forward Mode of AD II

See also the computational graph

v−1 v1 v4

v0

v2

v3

v5 f (x1, x2)

x1

x2

Chih-Jen Lin (National Taiwan Univ.) 6 / 19



Forward Mode of AD III

Example of Forward Primal Trace (to be discussed)

v−1

2

v1

ln 2

v4

0.693+10

v0

5

v2

2× 5

v3

sin 5

v5

10.693-(-0959)

f (x1, x2)

x1

x2
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Forward Mode of AD IV

Each vi comes from a simple operation

For computing
∂f

∂x1

we let

v̇i =
∂vi
∂x1

and apply the chain rule

Forward derivative calculation:
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Forward Mode of AD V

v̇−1 = ẋ1 = 1
v̇0 = ẋ2 = 0

v̇1 = v̇−1/v−1 = 1/2
v̇2 = v̇−1 × v0 + v̇0 × v−1 = 1× 5 + 0× 2
v̇3 = v̇0 × cos v0 = 0× cos 5
v̇4 = v̇1 + v̇2 = 0.5 + 5
v̇5 = v̇4 − v̇3 = 5.5− 0

ẏ = v̇5 = 5.5
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Forward Mode of AD VI

For example,

v1 = ln v−1

∂v1
∂x1

=
1

v−1
× ∂v−1

∂x1

=
v̇−1

v−1
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Jacobian Calculation by Forward Mode I

Consider
f : Rn → Rm

so that y1
...
ym

 = f (x1, . . . , xn)

The Jacobian is 
∂y1
∂x1

· · · ∂y1
∂xn

. . .
∂ym
∂x1

· · · ∂ym
∂xn


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Jacobian Calculation by Forward Mode II

If we initialize

ẋ = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0]T

then 
∂y1
∂xi...
∂ym
∂xi


can be calculated in one forward pass

Chih-Jen Lin (National Taiwan Univ.) 12 / 19



Jacobian Calculation by Forward Mode III

But this means we need n forward passes for the
whole Jacobian

In many optimization methods we do not need the
whole Jacobian. Instead we need

Jacobian-vector products

That is,

Jr =


∂y1
∂x1

· · · ∂y1
∂xn

. . .
∂ym
∂x1

· · · ∂ym
∂xn


r1...
rn


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Jacobian Calculation by Forward Mode IV

This can be calculated in one pass by initializing
with ẋ = r

Now v̇i is changed from

v̇i =
∂vi
∂x1

to

v̇i =
∂vi
∂x1

r1 + · · ·+ ∂vi
∂xn

rn
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Jacobian Calculation by Forward Mode V

For example, if

v2 = v−1 × v0,

then we still have

v̇2 = v̇−1 × v0 + v̇0 × v−1

We will see examples of using Jacobian-vector
products later in discussing Newton methods
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Jacobian Calculation by Forward Mode VI

The discussion shows that the forward mode is
efficient for

f : R → Rm

by one pass

But for the other extreme

f : Rn → R ,

to calculate the gradient

∇f =
[
∂y
∂x1

· · · ∂y
∂xn

]T
we need n passes
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Jacobian Calculation by Forward Mode VII

This is not efficient

Subsequently we will consider another way for AD:
reverse mode
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