
Project: More Experiments on Stochastic
Gradient Methods

Last updated: March 20, 2021

March 20, 2021 1 / 17



Goal

We want to know more the internal details of
simpleNN

We want to roughly compare the two stochastic
gradient approaches: SG with momentum and Adam

March 20, 2021 2 / 17



Project Contents: First Part I

In our code, stochastic gradient is implemented in a
subroutine gradient trainer in train.py. You
can see a for loop there.

for epoch in range(0, args.epoch):

...

for i in range(num_iters):

...

step, _, batch_loss= sess.run(

[global_step, optimizer, loss_with_reg],

feed_dict = {x: batch_input, y: batch_labels,

learning_rate: lr})

March 20, 2021 3 / 17



Project Contents: First Part II

The optimizer was specified earlier:

optimizer = tf.compat.v1.train.MomentumOptimizer(

learning_rate=learning_rate,

momentum=config.momentum).minimize(

loss_with_reg,

global_step=global_step)

It happened that we run the SG steps by ourself,
but in Tensorflow there must be a way so that
stochastic gradient methods can be directly called in
one statement

March 20, 2021 4 / 17



Project Contents: First Part III

That is, for a typical user of tensorflow, they would
call

train.MomentumOptimizer

once without the for loop

We would like to check if under the same initial
model, the two settings give the same results

To check “the same results” you can, for example,
compare their models at each iteration or compare
their objective values

Therefore, for this part of the project you only need
to run very few iterations (e.g., 5)

March 20, 2021 5 / 17



Project Contents: First Part IV

Further, we should use the simplest setting: SG
without momentum

You can print out weight values for the comparison

If you face difficulties, consider to simplify your
settings for debugging:

Use a small set of data (e.g.,
data/mnist-demo.mat) or evan a subset of
just 100 instances
Enlarge --bsize to be the same as the
number of data. Then essentially you do
gradient descent

March 20, 2021 6 / 17



Project Contents: First Part V

We will separately discuss

modification of simpleNN, and
direct use of Tensorflow

in subsequent slides

The regularization term may be a concern. Need to
make sure that the two settings minimize the same
objective function

For this project, you definitely need to trace the
subroutine gradient trainer in train.py.

March 20, 2021 7 / 17



Modification of simpleNN I

One issue is that in the beginning of each update,
we randomly select instances as the current batch:

idx = np.random.choice(

np.arange(0, num_data),

size=config.bsize, replace=False)

Tensorflow doesn’t do that so you can replace the
code with

idx = np.arange(i*config.bsize,

min((i+1)*config.bsize, num_data))

The min operation handles the situation if number
of data is not a multiple of the batch size

March 20, 2021 8 / 17



Direct Use of Tensorflow
MomentumOptimizer I

The workflow should be like this

Specify the network

model = ...

Specify the optimizer

model.compile(optimizer = ...

Do the training

model.fit = ...

To specify the network, CNN cannot be directly used

March 20, 2021 9 / 17



Direct Use of Tensorflow
MomentumOptimizer II

Instead you can directly do it in the subroutine
gradient trainer

Here we provide the code

model = CNN_model(config.net,

config.dim, config.num_cls)

You need to change the line

param = tf.compat.v1.trainable_variables()

to

param = model.trainable_weights

March 20, 2021 10 / 17



Direct Use of Tensorflow
MomentumOptimizer III

CNN and CNN model both use global variables, so we
specify which to use to avoid variable conflicts.

Note that there are two such places in
gradient trainer() and you need to change both

For calculating the objective value, you need to
replace

loss_with_reg = reg_const*reg +

loss/batch_size

with

March 20, 2021 11 / 17



Direct Use of Tensorflow
MomentumOptimizer IV

loss_with_reg = lambda y_true, y_pred:

reg_const*reg + tf.reduce_mean(tf.reduce_sum(

tf.square(y_true - y_pred), axis=1))

We no longer have the outputs of the model, so the
loss can’t be calculated directly

Instead we use some Tensorflow functions to
calculate the objective value

For the use of MomentumOptimizer you should
check Tensorflow manual in detail

March 20, 2021 12 / 17



Direct Use of Tensorflow
MomentumOptimizer V

This is what we want you to learn

There are no restrictions on the data set to be used
in this part. Even mnist-demo is fine. You can use
any data you want.

We’ve modified the net.py to make it easier for
everyone to do this project. We will also be
constantly improving simpleNN. Please constantly
git pull the latest version.

March 20, 2021 13 / 17



Project Contents: Second Part I

We want to check the test accuracy of two
stochastic gradient methods: SG with momentum
and Adam

Note that in the first project, what we used is the
simplest SG without momentum

We also hope to roughly check the parameter
sensitivity

Under each parameter setting, we run a large
number (e.g., 500) of iterations and use the model
at the last iteration

March 20, 2021 14 / 17



Project Contents: Second Part II

We do not use a model before the last iteration
because a validation process was not conducted

Please work on the same MNIST and CIFAR10 data
sets used in the previous project

In your report, give your results, observations and
thoughts

In the previous project, we used only default
parameters

You can slightly vary parameters (e.g., learning
rate in SGD and Adam) and check the test
accuracy

March 20, 2021 15 / 17



Project Contents: Second Part III

Due to the lengthy running time, no need to
try many parameter settings
Remember we don’t judge you solely by your
accuracy

March 20, 2021 16 / 17



Presentation

Students selected for presentation please do a
10-minute talk (9-minute the contents and 1-minute
Q&A)

March 20, 2021 17 / 17


