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Newton versus SG: Presentation I

It is better to give figures showing time versus
accuracy

Some give a table listing

accuracy and time

But a problem is when to terminate the
optimization procedure

In fact this is an important issue in deep learning
training

By a figure we can more clearly see the trend
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Newton versus SG: Performance I

Most of you found that SG diverges if the learning
rate is too large

This is right

Selecting the initial learning rate is a painful issue in
using SG

Therefore, Newton seems to be more robust

However, for VGG11, its performance is slightly
worse than SG

Our experiences so far are that the best accuracy by
Newton is sometimes not as good as SG when the
number of layers is large
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Newton versus SG: Performance II

Lots of research still need to be done

June 26, 2021 4 / 16



Newton Running Time Analysis I

For this part we would like to check if you
understand some contents of our lectures

We are running the same algorithm for both
settings. Only implementation on Gauss-Newton
matrix-vector products are different

Thus # iterations and # CGs should be almost the
same

We ran 5 iterations on department workstation
linux14 for two settings. Each way is run by 6 times.
And we selected the one with shortest running time.
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Newton Running Time Analysis II

Here shows our profiling results (including log files)
of two ways.

Because function and gradient evaluations are the
same, all we need to newly analyze is the CG time

Thus checking total time isn’t very useful

Now let’s focus on CG

We can check the details in CG for two ways
(not storing Jacobian and storing Jacobian). In
both cases, the total # CGs within 5 iterations are

72
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Newton Running Time Analysis III

The average # CGs per iteration is

14.4

Theoretical ratio in a single layer per iteration

5# CG

nL+1 + 1 + 2# CG

In our case, this ratio is

5 × 14.4

10 + 1 + 2 × 14.4
= 1.80

For timing, we got
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Newton Running Time Analysis IV

Jacobian not stored:

975.1s for products, i.e., R JTBJv()

Jacobian stored:

219.8s for construction, i.e., Jacobian()
431.9s for products, i.e., JTBJv()

The ratio is

975.1

219.8 + 431.9
= 1.49

Some may compare this ratio with 1.80 for checking
the practical running time and theoretical complexity
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Newton Running Time Analysis V

This may not be appropriate as we have learned in
proj 3 and proj 4, MATLAB has efficient
matrix-matrix product while some other functions
may not be well-optimized.

For these two implementations, they may have
different non-optimized operations

So let’s check the matrix-matrix product to verify
the theoretical ratio.

For simplicity, let’s focus on CG steps only. Thus for
the approach of storing Jacobian, we ignore the
initial construction cost
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Newton Running Time Analysis VI

Thus the theoretical ratio is

5 × # CG

2 × # CG
= 2.5

If Jacobian is not stored, in R JTBJv(), firstly we
check the matrix-matrix product in Jv().

We can observe that line 17 takes 46.5s:

net.Z{m+1} = max(model.weight{m}*net.phiZ{m}

+ model.bias{m}, 0);

and line 20 takes 102.9s:
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Newton Running Time Analysis VII

R_Z = model.weight{m}*R_Z

+ v_(:, 1:end-1)*net.phiZ{m} + v_(:, end);

For JTv(), this function is also called by
lossgrad subset().

We see JTv() in R JTBJv() took 400.7s.

This divided by the total time of JTv() (i.e.,
1045.9s) gives a ratio

400.7

1045.9
≈ 0.38
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Newton Running Time Analysis VIII

We can use this ratio to estimate time of operations
in JTv() that are related to R JTBJv().

With this ratio, we can estimate the time for
matrix-matrix products in JTv(). Line 21 costs
199.3 ∗ 0.38 = 75.7s:

JTv_{m} = [v*net.phiZ{m}’ sum(v, 2)];

while line 24 costs 96.5 ∗ 0.38 = 36.6s:

v = model.weight{m}’ * v;

So the matrix-matrix product in R JTBJv() cost
46.5 + 102.9 + 75.7 + 36.6 = 261.8s.
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Newton Running Time Analysis IX

If Jacobian is stored, in JTBJv(), line 78 takes 37.3s:

p = p(:, 1:end-1)*net.phiZ{m} + p(:, end);

while line 108 takes 84.3s:

u_m = [u_m*net.phiZ{m}’ sum(u_m, 2)];

Their sum is 37.3 + 84.3 = 121.6s.

Therefore, the practical ratio of two ways involving
matrix-matrix product is:

261.8

121.6
≈ 2.15
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Newton Running Time Analysis X

In this way, it seems that the practical ratio is
roughly consistent with theoretical ratio.

We can see that other operations, due to inefficient
implementations, may take more time than
matrix-matrix products.

For example, in JTBJv(), you can see the most
time-consuming part is line 79:

p = sum(reshape(net.dzdS{m}, d*ab, nL,

[]) .* reshape(p, d*ab, 1, []),1);

let’s check the following our course slides
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From Course Slides I

To get 
∂zL+1,1

∂vec(Sm,1)T p
m,1

...
∂zL+1,l

∂vec(Sm,l)T p
m,l

 ,

we need l matrix-vector products

There is no good way to transform it to
matrix-matrix operations
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From Course Slides II

At this moment we calculate

Jm,i
v
m =

∂zL+1,i

∂vec(Sm,i)T
p
m,i , i = 1, . . . , l . (1)

by summing up all rows of the following matrix[
∂zL+1,i

1

∂vec(Sm,i)
· · ·

∂zL+1,i
nL+1

∂vec(Sm,i)

]
dm+1amconvb

m
conv×nL+1

�[
p
m,i · · ·pm,i

]
dm+1amconvb

m
conv×nL+1

.

and extend this to cover all instances together
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