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@ It is better to give figures showing time versus
accuracy

@ Some give a table listing
accuracy and time

@ But a problem is when to terminate the
optimization procedure

@ In fact this is an important issue in deep learning
training

e By a figure we can more clearly see the trend
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@ Most of you found that SG diverges if the learning
rate is too large

@ This is right

@ Selecting the initial learning rate is a painful issue in
using SG

@ Therefore, Newton seems to be more robust

e However, for VGGL11, its performance is slightly
worse than SG

@ Our experiences so far are that the best accuracy by

Newton is sometimes not as good as SG when the
number of layers is large
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@ Lots of research still need to be done
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@ For this part we would like to check if you
understand some contents of our lectures

@ We are running the same algorithm for both
settings. Only implementation on Gauss-Newton
matrix-vector products are different

@ Thus # iterations and # CGs should be almost the
same

@ We ran 5 iterations on department workstation
linux14 for two settings. Each way is run by 6 times.
And we selected the one with shortest running time.
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@ Here shows our profiling results (including log files)
of two ways.

@ Because function and gradient evaluations are the
same, all we need to newly analyze is the CG time

@ Thus checking total time isn't very useful

@ Now let's focus on CG

@ We can check the details in CG for two ways
(not storing Jacobian and storing Jacobian). In
both cases, the total # CGs within 5 iterations are

72
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@ The average # CGs per iteration is

14.4
@ Theoretical ratio in a single layer per iteration

54# CG
ni1+ 14+ 2# CG

@ In our case, this ratio is

hx 144
10+1+2x14.4

=1.80

e For timing, we got
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e Jacobian not stored:
e 975.1s for products, i.e., R.JTBJv()
e Jacobian stored:

o 219.8s for construction, i.e., Jacobian()
o 431.9s for products, i.e., JTBJv()

@ Theratiois

975.1

= 1.49
219.8 +431.9

@ Some may compare this ratio with 1.80 for checking
the practical running time and theoretical complexity
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@ This may not be appropriate as we have learned in
proj 3 and proj 4, MATLAB has efficient
matrix-matrix product while some other functions
may not be well-optimized.

@ For these two implementations, they may have
different non-optimized operations

@ So let's check the matrix-matrix product to verify
the theoretical ratio.

@ For simplicity, let's focus on CG steps only. Thus for
the approach of storing Jacobian, we ignore the
initial construction cost
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@ Thus the theoretical ratio is

bx# CG

— = 2.
2 x # CG >

@ If Jacobian is not stored, in R JTBJv(), firstly we
check the matrix-matrix product in Jv().

@ We can observe that line 17 takes 46.5s:
net.Z{m+1} = max(model.weight{m}*net.phiZ{m!
+ model .bias{m}, 0);
and line 20 takes 102.9s:
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R_Z = model.weight{m}*R_Z
+ v_(:, l:end-1)*net.phiZ{m} + v_(:, end);

@ For JTv(), this function is also called by
lossgrad _subset().

@ We see JTv() in R.JTBJv() took 400.7s.

@ This divided by the total time of JTv() (i.e.,
1045.9s) gives a ratio

400.7

10459 = 038
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@ We can use this ratio to estimate time of operations
in JTv() that are related to R_JTBJv().

@ With this ratio, we can estimate the time for
matrix-matrix products in JTv(). Line 21 costs
199.3 % 0.38 = 75.7s:

JTv_{m} = [v*net.phiZ{m}’ sum(v, 2)];
while line 24 costs 96.5 * 0.38 = 36.6s:
v = model.weight{m}’ * v;

@ So the matrix-matrix product in R_JTBJv() cost
46.5 +102.9 + 75.7 4 36.6 = 261.8s.
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@ If Jacobian is stored, in JTBJv(), line 78 takes 37.3s:
p = p(:, l:end-1)*net.phiZ{m} + p(:, end);
while line 108 takes 84.3s:

u_m = [u_m*net.phiZ{m}’ sum(u_m, 2)];
Their sum is 37.3 + 84.3 = 121.6s.

@ Therefore, the practical ratio of two ways involving
matrix-matrix product is:

261.8

16 ~ 2.15
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@ In this way, it seems that the practical ratio is
roughly consistent with theoretical ratio.

@ We can see that other operations, due to inefficient
implementations, may take more time than
matrix-matrix products.

@ For example, in JTBJv(), you can see the most
time-consuming part is line 79:

p = sum(reshape(net.dzdS{m}, d*ab, nL,
[1) .* reshape(p, d*ab, 1, [1),1);

let's check the following our course slides
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o To get
ozH11 m,1
8vec(5"’=1)Tp
; ;
8ZL+1,/ m.l

7

8vec(5’"v’)Tp
we need / matrix-vector products

@ There is no good way to transform it to
matrix-matrix operations
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@ At this moment we calculate

8ZL+1,i

TV w5y

mii=1,...,1. (1)

by summing up all rows of the following matrix

Ozt DzLrLi
Avec(S™))  dvec(S™) ®

1
dmt any bgg)nv XNy

m,i m,i

’]
p 1 -
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and extend this to cover all instances together



