Robustness of Newton Methods and Running Time Analysis

Last updated: June 26, 2021
It is better to give figures showing time versus accuracy
Some give a table listing accuracy and time
But a problem is when to terminate the optimization procedure
In fact this is an important issue in deep learning training
By a figure we can more clearly see the trend
Most of you found that SG diverges if the learning rate is too large
This is right
Selecting the initial learning rate is a painful issue in using SG
Therefore, Newton seems to be more robust
However, for VGG11, its performance is slightly worse than SG
Our experiences so far are that the best accuracy by Newton is sometimes not as good as SG when the number of layers is large
Lots of research still need to be done
Newton Running Time Analysis I

- For this part we would like to check if you understand some contents of our lectures.
- We are running the same algorithm for both settings. Only implementation on Gauss-Newton matrix-vector products are different.
- Thus # iterations and # CGs should be almost the same.
- We ran 5 iterations on department workstation linux14 for two settings. Each way is run by 6 times. And we selected the one with shortest running time.
Here shows our profiling results (including log files) of two ways.

Because function and gradient evaluations are the same, all we need to newly analyze is the CG time.

Thus checking total time isn’t very useful.

Now let’s focus on CG.

We can check the details in CG for two ways (not storing Jacobian and storing Jacobian). In both cases, the total number of CGs within 5 iterations are 72.
The average number of CGs per iteration is 14.4.

Theoretical ratio in a single layer per iteration:

\[
\frac{5\# CG}{n_{L+1} + 1 + 2\# CG}
\]

In our case, this ratio is

\[
\frac{5 \times 14.4}{10 + 1 + 2 \times 14.4} = 1.80
\]

For timing, we got
Newton Running Time Analysis IV

- Jacobian not stored:
 - 975.1s for products, i.e., $R_{JTBJv}()$
- Jacobian stored:
 - 219.8s for construction, i.e., $\text{Jacobian}()$
 - 431.9s for products, i.e., $JTBJv()$

- The ratio is

$$\frac{975.1}{219.8 + 431.9} = 1.49$$

- Some may compare this ratio with 1.80 for checking the practical running time and theoretical complexity
This may not be appropriate as we have learned in proj 3 and proj 4, MATLAB has efficient matrix-matrix product while some other functions may not be well-optimized.

For these two implementations, they may have different non-optimized operations.

So let’s check the matrix-matrix product to verify the theoretical ratio.

For simplicity, let’s focus on CG steps only. Thus for the approach of storing Jacobian, we ignore the initial construction cost.
Thus the theoretical ratio is
\[
\frac{5 \times \# \text{ CG}}{2 \times \# \text{ CG}} = 2.5
\]

If Jacobian is not stored, in \texttt{R_JTBJv()}, firstly we check the matrix-matrix product in \texttt{Jv()}. We can observe that line 17 takes 46.5s:
\[
\text{net.Z}\{m+1\} = \max(\text{model.weight}\{m\} \times \text{net.phiZ}\{m\} + \text{model.bias}\{m\}, 0);
\]
and line 20 takes 102.9s:
R_Z = model.weight{m}*R_Z + v_(:, 1:end-1)*net.phiZ{m} + v_(:, end);

- For \(JTv() \), this function is also called by \texttt{lossgrad_subset()}.
- We see \(JTv() \) in \texttt{R_JTBJv()} took 400.7s.
- This divided by the total time of \(JTv() \) (i.e., 1045.9s) gives a ratio

\[
\frac{400.7}{1045.9} \approx 0.38
\]
We can use this ratio to estimate time of operations in \(JTv() \) that are related to \(R_{JTBJv}() \).

With this ratio, we can estimate the time for matrix-matrix products in \(JTv() \). Line 21 costs \(199.3 \times 0.38 = 75.7 \text{s} \):

\[
JTv_{m} = [v*net.phiZ{m}' \text{ sum}(v, 2)];
\]

while line 24 costs \(96.5 \times 0.38 = 36.6 \text{s} \):

\[
v = model.weight{m}' * v;
\]

So the matrix-matrix product in \(R_{JTBJv}() \) cost \(46.5 + 102.9 + 75.7 + 36.6 = 261.8 \text{s} \).
If Jacobian is stored, in \texttt{JTBJv()}, line 78 takes 37.3s:
\[p = p(:, 1:end-1) \times \text{net.phiZ\{m\}} + p(:, end); \]
while line 108 takes 84.3s:
\[u_m = [u_m \times \text{net.phiZ\{m\}'} \text{ sum}(u_m, 2)]; \]
Their sum is \[37.3 + 84.3 = 121.6\]s.

Therefore, the practical ratio of two ways involving matrix-matrix product is:
\[
\frac{261.8}{121.6} \approx 2.15
\]
In this way, it seems that the practical ratio is roughly consistent with theoretical ratio.

We can see that other operations, due to inefficient implementations, may take more time than matrix-matrix products.

For example, in `JTBJv()`, you can see the most time-consuming part is line 79:

```matlab
p = sum(reshape(net.dzdS{m}, d*ab, nL, []).*reshape(p, d*ab, 1, []),1);
```

let’s check the following our course slides
To get

\[
\begin{bmatrix}
\frac{\partial z^{L+1,1}}{\partial \text{vec}(S^{m,1})^T} p^{m,1} \\
\vdots \\
\frac{\partial z^{L+1,l}}{\partial \text{vec}(S^{m,l})^T} p^{m,l}
\end{bmatrix},
\]

we need \(l \) matrix-vector products

There is no good way to transform it to matrix-matrix operations
At this moment we calculate

\[J^{m,i} \mathbf{v}^m = \frac{\partial z^{L+1,i}}{\partial \text{vec}(S^{m,i})} p^{m,i}, \quad i = 1, \ldots, l. \]

(1)

by summing up all rows of the following matrix

\[
\begin{bmatrix}
\frac{\partial z_1^{L+1,i}}{\partial \text{vec}(S^{m,i})} & \cdots & \frac{\partial z_{nL+1}^{L+1,i}}{\partial \text{vec}(S^{m,i})}
\end{bmatrix}
\]

\[
\begin{bmatrix}
p^{m,i} & \cdots & p^{m,i}
\end{bmatrix}
\]

and extend this to cover all instances together.