Discussion on the Project of Investigating Python Profilers

Last updated: June 6, 2021
We specifically ask you to compare the running time and the theoretical complexity. Most did that though few did not. The way to present your results is something you need to think about. Now you have:

- time vs. complexity
- convolution vs. pooling vs. linear
- single vs. multiple cores

How to clearly summarize these things needs a careful design.
For linear layers most observed no speedup after using multiple cores

One possible reason is that matrices here are small and the running time for linear layers is short.
An issue we did not mention in the project slides is the padding operation before the convolutional operation.

In CNN, images are assumed to have the same size.

We do padding for reasons such as making the output image of the current layer not too small or ensuring that images can be exactly split to sub-images.

For texts, we can do similar things.

But for texts, there is another place where padding is needed.
We assumed that each document is represented by the following word embeddings

\[X = [x_1 \ldots x_N] \in \mathbb{R}^{d_e \times N}, \]

where \(d_e \) is the word-embedding dimension and \(N \) is the document length.

Here we assume that each document has \(N \) tokens (words) and \(N \) is a constant.

This is of course not true as documents have different lengths.
One way is to pad all documents to have the same length.
But this may add too many zeros on some documents.
In LibMultiLabel, what we did is to make documents in the same batch have the same length. This setting has also been used in other software.
Thus in your complexity analysis, N is bigger than the average document lengths.
An issue of this setting is that when the batch size changes, padding is a contributing factor to affect the behavior of the optimization algorithm.
In this project you have had some experiences on the package LibMultiLabel.

We are actively developing this package. If you are interested in this research direction, you are welcome to work with us.