
Project: An Investigation of Python
Profilers

Last updated: May 23, 2021

May 23, 2021 1 / 22

Introduction I

Earlier in a project to check the running time of
MATLAB and Tensorflow implementations, we
could only profile the MATLAB code

Our Tensorflow code, based on Tensorflow 1.xx, is
not procedural

This seems to make the profiling difficult

In this project let’s consider the package
LibMultiLabel at https:
//github.com/ASUS-AICS/LibMultiLabel for
multi-label text classification

It is based on PyTorch and has a procedural setting

May 23, 2021 2 / 22

https://github.com/ASUS-AICS/LibMultiLabel
https://github.com/ASUS-AICS/LibMultiLabel

Introduction II

The goal is to do profiling for running this package

The profiling should be similarly detailed as
MATLAB

The network is simple: one convolutional layer and
then one linear layer

This is also a chance for us to learn how CNN is
used for text data

The package is being actively developed. If changes
may affect your projects, we will let you know.

May 23, 2021 3 / 22

Introduction III

Anyway, we encourage you to always pull the latest
version. For problems related to the package, you
can directly file an issue on Github

May 23, 2021 4 / 22

CNN for Text Data I

Assume each document has the following word
embeddings

X =
[
x1 . . . xN

]
∈ Rde×N ,

where de is the word-embedding dimension and N is
the document length.

That is, by some ways we have already obtained
some information for each word

May 23, 2021 5 / 22

CNN for Text Data II

For any filter
v ∈ Rde×k ,

a convolutional operation is applied to a text region

[xn, . . . , xn+k−1] ∈ Rde×k

of k words

It is like that we treat X as an image and
horizontally extract sub-images

May 23, 2021 6 / 22

CNN for Text Data III

Thus the following operation is conducted:

(hn)j = σ(〈W1:de ,1:k ,j , [xn, . . . , xn+k−1]〉+ bj),

where hn is the nth output vector, 〈·, ·〉 is the
component-wise sum of two matrices,

W1:de ,1:k ,j ∈ Rde×k

is the jth filter, and σ is an activation function.

May 23, 2021 7 / 22

CNN for Text Data IV

Here
j = 1, . . . , dc

so dc is the number of filters.

The output after the convolutional operation is a
matrix

H =
[
h1 . . . hN−k+1

]
∈ Rdc×(N−k+1)

Assuming the input is not zero-padded

May 23, 2021 8 / 22

Pooling I

The maximum from each row of H is collected

gi = max
j

Hij

g =
[
g1 . . . gdc

]ᵀ ∈ Rdc

This naturally allows for variable document length N

May 23, 2021 9 / 22

Linear I

The final layer is a linear layer

z = Ag + c ∈ R l

where A ∈ R l×dc is the weights, c is the bias and l
is the number of classes

May 23, 2021 10 / 22

Multi-label Prediction I

Each instance belongs to multiple classes

Thus we cannot take the maximum of z as the
prediction

For this project, we do not worry about how
predictions are done

May 23, 2021 11 / 22

Cost Analysis I

Convolutional layer

k × de × dc × N

Pooling layer
dc × N

Linear layer
l × dc

May 23, 2021 12 / 22

Project Contents I

See LibMultiLabel README for installation
instructions

Let’s run 5 epochs on the rcv1 data and do some
analysis

We will use the kim cnn architecture (Kim, 2014)

Check the example in the “Quick Start via
Example” section of README

In kim cnn.yml you will see a line

filter_sizes: [2 4 8]

May 23, 2021 13 / 22

Project Contents II

This means that different filter sizes are considered.
Let’s change to use the size of 2 only for easier
analysis

A key thing is to check the running time of major
operations and see if things agree with the
complexity analysis

In particular, we check the forward process which is
implemented by us. In contrast, the backward
process is done by PyTorch

The usage is

May 23, 2021 14 / 22

Project Contents III

python3 main.py --cpu --config \

example_config/rcv1/kim_cnn.yml

For the current setting, the program predicts a test
set in the end. Since we are interested only in
training, you can remove the test file and the test
procedure will not be conducted

For the training procedure, the code internally splits
the training set to 80% for training and 20% for
validation

The validation procedure is used in, for example,
deciding when the training procedure should stop

May 23, 2021 15 / 22

Project Contents IV

Here we do not need that but there is no option yet
to disable the validation procedure.

This is fine because in your comparison between
convolutional and linear layers, they are now both
run on 80% of data

To specify parameters, such as the number of
epochs, you need to modify the configuration file
kim cnn.yml

These parameters are specified by the following
arguments in the configuration file

k : filter sizes

May 23, 2021 16 / 22

Project Contents V

dc : num filter per size

de : it depends on embed file (e.g.
glove.6B.300d is 300)
Note that for the example we use a pre-trained
word embeddings glove.6B.300d

l : 103 for rcv1
N : average 123.9 for rcv1

May 23, 2021 17 / 22

Profiler I

The package pprofile provides line by line profiling

Install it by

pip3 install pprofile

Basic usage is to replace python3 with pprofile

pprofile main.py arg1 arg2 ...

No code modification is needed

Other Python profilers are available, but we found
this one useful

May 23, 2021 18 / 22

Issue of Multiple Cores I

Let’s try both single and multiple cores

For PyTorch, we do

torch.set_num_threads(1)

An issue of the above setting is that PyTorch runs 2
threads and uses 50% CPU on each

We can force a process to use one core by

taskset -c 0 [command]

May 23, 2021 19 / 22

Optimized BLAS I

Can we confirm that optimized BLAS is used in
PyTorch?

May 23, 2021 20 / 22

Some Notes on Using 217 Workstations I

This page provides some help for students who use
department workstation.

Your home directory is unlikely to have enough
storage for the embedding file and model data

You may symlink to /tmp2/$USER

mkdir -p /tmp2/$USER/runs

mkdir -p /tmp2/$USER/.vector_cache

ln -s /tmp2/$USER/runs runs

ln -s /tmp2/$USER/.vector_cache .vector_cache

Be sure to read the rules of using /tmp2

May 23, 2021 21 / 22

https://wslab.csie.ntu.edu.tw/tmp2_usage_rules.html

References I

Y. Kim. Convolutional neural networks for sentence classification. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1746–1751, 2014. doi: 10.3115/v1/D14-1181.

May 23, 2021 22 / 22

	References

