
Discussion on the Project of Making the
MATLAB Implementation Competitive

with Tensorflow

Last updated: May 10, 2021

May 10, 2021 1 / 12

Part One: Two accumarray

Implementations I

The first code considers a simple loop as follows

for(mwSize i = 0; i < m; i++)

vTPp[int(subsp[i]) - 1] += valp[i];

However, an issue is that some threads may try to
update the same address

See our example before

(Pm
φ)Tv i = [v1 v2 + v5 v6 v3 v4 + v7 v8]T (1)

May 10, 2021 2 / 12

Part One: Two accumarray

Implementations II

We need to specify that the update is an atomic
operation:

for(mwSize i = 0; i < m; i++)

#pragma omp atomic

vTPp[int(subsp[i]) - 1] += valp[i];

Notice that we do accumarray on multiple
instances in one call

May 10, 2021 3 / 12

Part One: Two accumarray

Implementations III

Recall that in the earlier discussion we prepared
indices in different ranges: for given indices[

1 2 4 5 2 3 5 6
]T

(2)

We can apply MATLAB’s accumarray on the vectorv 1

...
v
l

 , (3)

May 10, 2021 4 / 12

Part One: Two accumarray

Implementations IV

by giving the following indices as the input.
(2)

(2) + ampadb
m
padd

m1hmhmdmamconvb
m
conv

(2) + 2ampadb
m
padd

m1hmhmdmamconvb
m
conv

...
(2) + (l − 1)ampadb

m
padd

m1hmhmdmamconvb
m
conv

 , (4)

where

ampadb
m
padd

m is the size of pad(Zm,i)
May 10, 2021 5 / 12

Part One: Two accumarray

Implementations V

and

hmhmdmamconvb
m
conv is the size of φ(pad(Zm,i)) and v i .

Then we can do a two-level loop, where the first one
is on instances

Then we can parallelize the outer loop without
needing atomic operations

This is the second implementation

May 10, 2021 6 / 12

Part One: Two accumarray

Implementations VI

Comparisons done by our TAs sometime ago on a
clean machine are as follows.

Average of 10 runs on the full set of mnist

1-level loop: 36.68 seconds

2-level loop: 14.55 seconds

Clearly the use of a 2-level loop is much better

It’s unclear why this happens, but atomic operations
might be a reason.

We add atomic in the 2-level loop, and the running
time is increased to 36.75 seconds

May 10, 2021 7 / 12

Part Two: Outer Sum I

The outer sum computes the Pφ matrix for all
instances in the batch as a combined matrix

However, Pφ is the same for all instances

We can therefore calculate the indices for different
instances by adding the appropriate offset

The new for loop is as follows:

May 10, 2021 8 / 12

Part Two: Outer Sum II

for (mwSize i = 0; i < inst; i++)

{

auto inst_arrayp = arrayp + i * m;

for (mwSize j = 0; j < m; j++)

{

auto at = int(idxp[j]) - 1 + i * sz;

vTPp[at] += inst_arrayp[j];

}

}

Note that Ppool is dependent on the instance, and
cannot be computed by the same method

May 10, 2021 9 / 12

Part Three: Comparison with Tensorflow I

Some reported that MATLAB is slower

But some reported the opposite

A possible reason is that some instructions may not
be supported by older CPU architecture. On some
workstation machines (linux5 to linux15), due to
hardware limitations, Tensorflow was not installed to
use optimized instructions such as AVX2 and FMA.

Our TAs did the following command

python3 -c ’import tensorflow as tf;tf.ones(1)’

May 10, 2021 10 / 12

Part Three: Comparison with Tensorflow II

The following statement

This TensorFlow binary is optimized with

oneAPI Deep Neural Network Library (oneDNN)

to use the following CPU instructions in

performance-critical operations: SSE3

SSE4.1 SSE4.2 AVX AVX2 FMA

was displayed on linux1 to linux4. While the last
two instructions AVX2 and FMA were not available on
linux5 to linux15.

May 10, 2021 11 / 12

Part Three: Comparison with Tensorflow
III

For current department workstation machines,
TensorFlow is more powerful on linux1 to linux4
compared with linux5 to linux15.

You can run lscpu on the command line and check
the “Flags” at the end where you can see which
instructions are supported by the CPU.

May 10, 2021 12 / 12

