Project: Making the MATLAB
Implementation Competitive with

Tensorflow

Last updated: April 20, 2021

. Y

Goal

@ Using the Matlab-C interface to improve the
running speed of our MATLAB implementation

. R

N
Introduction |

@ From project 3 we know that the MATLAB
implementation is slower than Tensorflow

e We know the complexity of ¢(pad(Z™')) and
(v’)TP(;" is relatively smaller than matrix-matrix
products. However, they are among the bottlenecks

@ The main issue is on index manipulation. One
function is matrix expansion and another is
accumarray, which are not well-optimized to take
the advantage of multi-core CPUs

@ So in this project, we provide a MATLAB-C
interface for matrix expansion and accumarray

. R

N
Introduction ||

@ See files in this directory.

@ We would like to know whether eventually the
MATLAB code can be as fast as Tensorflow by
leveraging the C code

@ Not clear if we can really reach this goal, but let’s
try the best

@ When developing efficient software, in order to
break the bottlenecks, we may encounter many
problems. Here we show you some examples so that
you can learn the experience

. R

https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2021/projects/proj4_code/

N
Introduction Il|

@ Note that the C code is parallelized by using
openMP.

@ If others are running jobs on the same machine, the
timing results may be inaccurate.

@ Thus you should start the project early so you can
find a clean server.

@ This project has three parts.

. R

-
Project Contents: Part 1 |

@ We want to develop an efficient accumarray in C
code.

@ We provide you with two implementations. The first
is named accumArrayl, while the second is
accumArray?.

@ You need to trace two code and compare their
running time.

@ Then choose a more efficient accumArrayN for the
next part.

. T

-
Project Contents: Part 2 |

@ We want to break another bottleneck in vIP.m

@ From details in profiling vIP.m in project 3, except
accumarray, you may also observe that line 29 of
vIP.m is time-consuming
idx = net.idx_phiZ{m}(:)

+ [0:num_v-1]*d_prev*a_prev*b_prev;
where net.idx_phiZ{m}(:) is a column vector
and [0:num_v-1]*d_prev*a_prev*b_prev is a
row vector.

@ It took a long time for doing the outer sum.

. AT

-
Project Contents: Part 2 |l

@ We want to reduce the running time of this line.

@ You want to figure out how to modify accumArrayN

(the one chosen in part 1) to optimize line 29 of
vIP.m

@ Hint: The second term of line 29 of vTP.m can be
moved to the C code.

@ Roughly speaking, the task of the outer sum can be
embedded to the main loop in accumArrayN.

@ In your report you must to show what your main
loop is.

. T

-
Project Contents: Part 2 llI

o Notice that line 29 of vIP.m is used in calculating
(v/)" P, but vTP.m also handles another operation
(Vi)T'D[T)oI'

@ Thus the input of accumArrayN should be different
for the two cases.

@ Conduct experiments to see if the running time is
reduced.

. G

-
Project Contents: Part 3 |

@ Now consider

o the accumArrayN from part 2
o the provided code for ¢(pad(Z™"))
and compare the running time with Tensorflow

@ Give observations/analysis from your running time
comparison

. T

]
MATLAB-C Interface |

@ Say we would like to replace
phiZ = phiZ(net.idx_phiZ{m}, :);
and
vIP = accumarray(idx(:), V(:), [d_prev*a_prs
with our own implementation

@ We write special interface files
matrixExpansion.cpp and accumArrayN.cpp

@ It's a MATLAB mexFunction and the format must
be like

. I

.
MATLAB-C Interface Il

/* The gateway function */
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{

/* variable declarations here */

/* code here x/

+

@ See more information at
https://www.mathworks.com/help/matlab/
matlab_external/standalone-example.html

. T

https://www.mathworks.com/help/matlab/matlab_external/standalone-example.html
https://www.mathworks.com/help/matlab/matlab_external/standalone-example.html

]
MATLAB-C Interface Il

@ Here we have four arguments

@ nlhs: Number of output (left-side) arguments, or
the size of the plhs array.

@ plhs: Array of output arguments.

@ nrhs: Number of input (right-side) arguments, or
the size of the prhs array.

@ prhs: Array of input arguments.

@ Thus prhs[0] can be for example the input array
for expansion

. R

-
An Example on Matrix Expansion |

@ The .cpp code
#include <omp.h>

#include "mex.h"

extern "C" void mexFunction(int nlhs,
mxArray* plhs[], int nrhs, const mxArray* pi
{

auto& matrix = prhs[0];

auto& indices = prhs[1];

auto& out = plhs[0];

. T

-
An Example on Matrix Expansion Il

auto 1 = mxGetM(indices);

auto m = mxGetM(matrix) ;

auto n = mxGetN(matrix);

auto A = (float*)mxGetPr(matrix) ;
auto a = mxGetPr(indices);

out = mxCreateNumericMatrix(l, n, mxSINGLE_(
auto B = (float*)mxGetPr(out) ;

. N

-
An Example on Matrix Expansion IlI

#pragma omp parallel for schedule(static)
for(mwSize j = 0; j < n; j++)
for(mwSize i = 0; 1 < 1; i++)
B[j*1+i] = A[j*m+int(ali])-1];
+

@ Let's see how the code can be used. To begin, we
generate a matrix and a mapping

>> A = single(rand(1000, 1000));
>> a = randi(1000, 2000, 1);

@ This line generates a 2000 x 1 vector and each
element is an integer in [1, 1000].

. I

-
An Example on Matrix Expansion IV

@ Now see if our expansion gives the same results as
MATLAB
>> isequal(A(a, :), matrixExpansion(A, a))

@ We provide a test.m for running these three lines

. T

|
Arguments of accumArrayN |

@ The usage of the accumarray in line 42 of vIP.m is

vIP = accumarray(idx(:), V(:),
[d_prev*a_prev*b_prev*num_v 1])’;

@ Our accumArrayN should be used like

vIP = accumArrayN(idx(:), V(:),
d_preva_prev*b_prev, num_v)’;

. N

]
How to build mex file |

@ To build a .mex file for MATLAB, we provide two
ways by using

make.m
or
Makefile
@ Thus you can either type
>> make
under MATLAB or
$ make

under the shell

. N

]
How to build mex file |l

@ For unknown reasons, if using
>> make

on the department's servers, MATLAB reported an
error saying that the resulting file is not a MEX
file.

But in fact it works

@ To build a .mex on Octave, the only way we
provided is through

>> make

. T

N
Presentation

@ We will announce students who are selected to
present on NTU COOL later.

@ please do a 10-minute presentation (9-minute the
contents and 1-minute Q&A)

. R

