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Gradient descent

NN Optimization Problem I

Recall that the NN optimization problem is

min
θ

f (θ)

where

f (θ) =
1

2C
θTθ +

1

l

∑l

i=1
ξ(zL+1,i(θ); y i ,Z 1,i)

Let’s simplify the loss part a bit

f (θ) =
1

2C
θTθ +

1

l

∑l

i=1
ξ(θ; y i ,Z 1,i)

The issue now is how to do the minimization
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Gradient descent

Gradient Descent I

This is one of the most used optimization method

First-order approximation

f (θ + ∆θ) ≈ f (θ) +∇f (θ)T∆θ

Solve

min
∆θ

∇f (θ)T∆θ

subject to ‖∆θ‖ = 1 (1)

If no constraint, the above sub-problem goes to −∞
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Gradient descent

Gradient Descent II

The solution of (1) is

∆θ = − ∇f (θ)

‖∇f (θ)‖

This is called steepest descent method

In general all we need is a descent direction

∇f (θ)T∆θ < 0
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Gradient descent

Gradient Descent III

From

f (θ + α∆θ) =f (θ) + α∇f (θ)T∆θ+

1

2
α2∆θT∇2f (θ)∆θ + · · · ,

if
∇f (θ)T∆θ < 0,

then with a small enough α,

f (θ + α∆θ) < f (θ)
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Gradient descent

Line Search I

Because we only consider an approximation

f (θ + ∆θ) ≈ f (θ) +∇f (θ)T∆θ

we may not have the strict decrease of the function
value

That is,
f (θ) < f (θ + ∆θ)

may occur

In optimization we then need a step selection
procedure
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Gradient descent

Line Search II

Exact line search

min
α

f (θ + α∆θ)

This is a one-dimensional optimization problem

In practice, people use backtracking line search

We check
α = 1, β, β2, . . .

with β ∈ (0, 1) until

f (θ + α∆θ) < f (θ) + ν∇f (θ)T (α∆θ)
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Gradient descent

Line Search III

Here

ν ∈ (0,
1

2
)

The convergence is well established.

For example, under some conditions, Theorem 3.2
of Nocedal and Wright (1999) has that

lim
k→∞
∇f (θk) = 0,

where k is the iteration index

This means we can reach a stationary point of a
non-convex problem
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Gradient descent

Practical Use of Gradient Descent I

The standard back-tracking line search is simple and
useful

However, the convergence is slow for difficult
problems

Thus in many optimization applications, methods of
using second-order information (e.g., quasi Newton
or Newton) are preferred

f (θ+ ∆θ) ≈ f (θ) +∇f (θ)T∆θ+
1

2
∆θT∇2f (θ)∆θ

These methods have fast final convergence
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Gradient descent

Practical Use of Gradient Descent II

An illustration (modified from Tsai et al. (2014))
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Gradient descent

Practical Use of Gradient Descent III

But fast final convergence may not be needed in
machine learning

The reason is that an optimal solution θ∗ may not
lead to the best model

We will discuss such issues again later
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Mini-batch SG

Estimation of the Gradient I

Recall the function is

f (θ) =
1

2C
θTθ +

1

l

∑l

i=1
ξ(θ; y i ,Z 1,i)

The gradient is

θ

C
+

1

l
∇θ

l∑
i=1

ξ(θ; y i ,Z 1,i)

Going over all data is time consuming
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Mini-batch SG

Estimation of the Gradient II

What if we use a subset of data

E (∇θξ(θ; y ,Z 1)) =
1

l
∇θ

l∑
i=1

ξ(θ; y i ,Z 1,i)

We may just use a subset S

θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)
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Mini-batch SG

Algorithm I

1: Given an initial learning rate η.
2: while do
3: Choose S ⊂ {1, . . . , l}.
4: Calculate

θ ← θ − η(
θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

5: May adjust the learning rate η
6: end while

It’s known that deciding a suitable learning rate is
difficult
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Mini-batch SG

Algorithm II

Too small learning rate: very slow convergence

Too large learning rate: the procedure may diverge
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Mini-batch SG

Stochastic Gradient “Descent” I

In comparison with gradient descent you see that we
don’t do line search

Indeed we cannot. Without the full gradient, the
sufficient decrease condition may never hold.

f (θ + α∆θ) < f (θ) + ν∇f (θ)T (α∆θ)

Therefore, we don’t have a “descent” algorithm here

It’s possible that

f (θnext) > f (θ)

Though people frequently use “SGD,” it’s unclear if
“D” is suitable in the name of this method
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Mini-batch SG

Momentum I

This is a method to improve the convergence speed

A new vector v and a parameter α ∈ [0, 1) are
introduced

v ← αv − η(
θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

θ ← θ + v
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Mini-batch SG

Momentum II

Esssentially what we do is

θ ← θ − η(current sub-gradient)

−αη(prev. sub-gradient)

−α2η(prev. prev. sub-gradient)− · · ·

There are some reasons why doing so can improve
the convergence speed, though details are not
discussed here
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Adaptive learning rate

AdaGrad I

Scaling learning rates inversely proportional to the
square root of sum of past gradient squares (Duchi
et al., 2011)

Update rule:

g ← θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)

r ← r + g � g

θ ← θ − ε√
r + δ

� g

r : sum of past gradient squares
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Adaptive learning rate

AdaGrad II

ε and δ are given constants

�: Hadamard product (element-wise product of two
vectors/matrices)

A large g component

⇒ a larger r component

⇒ fast decrease of the learning rate

Conceptual explanation from Duchi et al. (2011):

frequently occurring features ⇒ low learning
rates
infrequent features ⇒ high learning rates
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Adaptive learning rate

AdaGrad III

“the intuition is that each time an infrequent
feature is seen, the learner should take notice.”

But how is this explanation related to g

components?

Let’s consider linear classification. Recall our
optimization problem is

w
T
w

2
+ C

l∑
i=1

ξ(w ; yi , x i)
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Adaptive learning rate

AdaGrad IV

For methods such as SVM or logistic regression, the
loss function can be written as a function of wT

x

ξ(w ; y , x) = ε̂(wT
x)

Then the gradient is

w + C
l∑

i=1

ε̂′(wT
x i)x i

Thus the gradient is related to the density of
features
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Adaptive learning rate

AdaGrad V

The above analysis is for linear classification

But now we have a non-convex neural network!

Empirically, people find that the sum of squared
gradient since the beginning causes too fast
decrease of the learning rate
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Adaptive learning rate

RMSProp I

The original reference seems to be the lecture slides
at https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf

Idea: they think AdaGrad’s learning rate may be too
small before reaching a locally convex region

That is, OK to sum all past gradient squares in
convex, but not non-convex

Thus they do “exponentially weighted moving
average”
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Adaptive learning rate

RMSProp II

Update rule

r ← ρr + (1− ρ)g � g

θ ← θ − ε√
δ + r

� g

AdaGrad:

r ← r + g � g

θ ← θ − ε√
r + δ

� g
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Adaptive learning rate

RMSProp III

Somehow the setting is a bit heuristic and the
reason behind the change (from AdaGrad to
RMSProp) is not really that strong
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Adaptive learning rate

ADAM (Adaptive Moments) I

The update rule (Kingma and Ba, 2015)

g ← θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)

s ← ρ1s + (1− ρ1)g

r ← ρ2r + (1− ρ2)g � g

ŝ ← s

1− ρt1
r̂ ← r

1− ρt2
θ ← θ − ε√

r̂ + δ
� ŝ
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Adaptive learning rate

ADAM (Adaptive Moments) II

t is the current iteration index

Roughly speaking, ADAM is the combination of

Momentum
RMSprop

From Goodfellow et al. (2016),

ε√
r̂ + δ

� ŝ

(i.e., the use of momentum combined with
rescaling) “does not have a clear theoretical
motivation”
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Adaptive learning rate

ADAM (Adaptive Moments) III

The two steps

ŝ ← s

1− ρt1
r̂ ← r

1− ρt2

are called “bias correction”

Why “bias correction”?
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Adaptive learning rate

ADAM (Adaptive Moments) IV

They hope that

E [s t] = E [g t ]

and

E [r t] = E [g t � g t ],

where t is the iteration index
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Adaptive learning rate

ADAM (Adaptive Moments) V

For s t , we have

s t = ρ1s t−1 + (1− ρ1)g t

= ρ1(ρ1s t−2 + (1− ρ1)g t−1) + (1− ρ1)g t

= (1− ρ1)
t∑

i=1

ρt−i1 g i

We assume that s is initialized as 0
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Adaptive learning rate

ADAM (Adaptive Moments) VI

Then

E [s t ] = E [(1− ρ1)
t∑

i=1

ρt−i1 g i ]

= E [g t](1− ρ1)
t∑

i=1

ρt−i1

Note that we assume

E [g i ],∀i ≥ 1

are the same
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Adaptive learning rate

ADAM (Adaptive Moments) VII

Next,

(1− ρ1)
t∑

i=1

ρt−i1

=(1− ρ1)(1 + · · ·+ ρt−1
1 )

=1− ρt1

Thus
E [s t] = E [g t ](1− ρt1)

and they do

ŝ ← s

1− ρt1
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Adaptive learning rate

ADAM (Adaptive Moments) VIII

The above derivation on bias correction partially
follows from https://towardsdatascience.com/

adam-latest-trends-in-deep-learning-optimization-6be9a291375c

The situation for E [g t � g t] is similar

How about ADAM’s practical performance?

From Goodfellow et al. (2016), “generally regarded
as being fairly robust to the choice of
hyperparmeters, though the learning rate may need
to be changed from the default”
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Adaptive learning rate

ADAM (Adaptive Moments) IX

However, from the web page we referred to for
deriving the bias correction, “The original paper ...
showing huge performance gains in terms of speed
of training. However, after a while people started
noticing, that in some cases Adam actually finds
worse solution than stochastic gradient”

One example of showing the above is Wilson et al.
(2017)

We may do some experiments later
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Discussion

Choosing Stochastic Gradient Algorithms

From Goodfellow et al. (2016), “there is currently
no consensus”

Further, “the choice ... seemed to depend on the
user’s familarity with the algorithm”

This isn’t very good. Can we have some systematic
investigation?
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Discussion

Why Stochastic Gradient Widely Used? I

The special property of data classification is
essential

E (∇θξ(θ; y ,Z 1)) =
1

`
∇θ

∑̀
i=1

ξ(θ; y i ,Z 1,i)

Indeed stochastic gradient is less used outside
machine learning

Easy implementation. It’s simpler than methods
using, for example, second derivative

Non-convexity plays a role
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Discussion

Why Stochastic Gradient Widely Used? II

For convex, other methods are efficient to find
the global minimum
But for non-convex, efficiency to reach a
stationary point is less useful
A global minimum usually gives a good model
(loss minimized), but for a stationary point we
are less sure

All these explain why SG is popular for deep learning

What are your opinions? Any other reasons you can
think of
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Discussion

Issues of Stochastic Gradient I

We have shown several variants

Don’t you think some settings are a bit ad hoc?

There are reasons behind each change. But some
are just heuristic

Can we try a paradigm completely different?

But before that we need some first-hand experiences
and know implementation details.
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Discussion
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