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NN Optimization Problem |

@ Recall that the NN optimization problem is

min f(0)
where
_ LT ! Lilifpy. i 7L
F(0)= 070+ 23 (21 (0) ', 21

@ Let's simplify the loss part a bit

_ T i 71,
£(0) = —99+/Z &(0;y', 74

@ The issue now is how to do the minimization
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Gradient Descent |

@ This is one of the most used optimization method
o First-order approximation

f(O + AB) ~ f(0) + VF(O) A8
@ Solve

min  Vf(0)" A6
AO

subject to  ||A@|| =1 (1)

@ If no constraint, the above sub-problem goes to —Oqg
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Gradient Descent |l

@ The solution of (1) is

_ VA(e)
80="1570)]

@ This is called steepest descent method
@ In general all we need is a descent direction

VF(0)TAO <0
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Gradient Descent |l|

@ From

(0 + al8) =f(0) + aVF(0) AG+

1
5oﬁA@Tv?f(a)Aa + .-

VF(0)TAB <0,

then with a small enough «,

£(0 + al8) < £(8)
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Line Search |

@ Because we only consider an approximation
f(O + AB) ~ f(0) + VF(O) A8

we may not have the strict decrease of the function
value

@ That is,
f(0) < f(0+ A0)
may occur

@ In optimization we then need a step selection

procedure
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Line Search Il

@ Exact line search
min (0 + aAB)

This is a one-dimensional optimization problem
@ In practice, people use backtracking line search
@ We check
a=10,03...
with 5 € (0,1) until

f(0 + alB) < f(8) +vVF(0)(aLd)
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Line Search Il

@ Here

1
vV E (0,5)

@ The convergence is well established.

@ For example, under some conditions, Theorem 3.2
of Nocedal and Wright (1999) has that

lim V£(6%) =0,
k—o00

where k is the iteration index

@ This means we can reach a stationary point of a
non-convex problem
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Practical Use of Gradient Descent |

@ The standard back-tracking line search is simple and
useful

@ However, the convergence is slow for difficult
problems

@ Thus in many optimization applications, methods of
using second-order information (e.g., quasi Newton
or Newton) are preferred

1
F(O+A0) ~ f(0)+VF(0) AO+ 5A¢9Tv2f(¢9)msr

@ These methods have fast final convergence

Chih-Jen Lin (National Taiwan Univ.) 11/45



Practical Use of Gradient Descent |l

@ An illustration (modified from Tsai et al. (2014))

distance to optimum
distance to optimum

Slow final convergence Fast final convergence
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Practical Use of Gradient Descent Il|

@ But fast final convergence may not be needed in
machine learning

@ The reason is that an optimal solution 8" may not
lead to the best model

@ We will discuss such issues again later
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QOutline

© Mini-batch SG
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Estimation of the Gradient |

@ Recall the function is

/ . .
f(0) = EOTH +5 Z,.:lf(e;y', z")

@ The gradient is

/
0 1 i 71,

i=1

@ Going over all data is time consuming

Chih-Jen Lin (National Taiwan Univ. 15 /45



Estimation of the Gradient Il

@ What if we use a subset of data

/
E(Vot(6:y. 7)) = 1Yo S €61y 2V)
i=1

@ We may just use a subset S

0 1

—+-—=Vo » &6y, 2"
¢ Yo S0 2)
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Algorithm |

1: Given an initial learning rate 7.
2. while do

3: Choose S C {1,...,/}.

4: Calculate

00— 77 ‘S’VQZﬁ Ly, 7))

i:ieS

5: May adjust the learning rate 1
6: end while

@ It's known that deciding a suitable learning rate is

difficult
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Algorithm |l

@ Too small learning rate: very slow convergence

@ Too large learning rate: the procedure may diverge
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Stochastic Gradient “Descent” |

@ In comparison with gradient descent you see that we
don’t do line search

@ Indeed we cannot. Without the full gradient, the
sufficient decrease condition may never hold.

(8 + alf) < f(0) +vVFE(0) (aA)
@ Therefore, we don't have a “descent” algorithm here
@ It's possible that
£(0") > £(0)

@ Though people frequently use “SGD,” it's unclear if
“D" is suitable in the name of this method
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Momentum |

@ This is a method to improve the convergence speed

@ A new vector v and a parameter « € [0, 1) are
introduced

V & av— ( |5|V025(9y zZH)

i:ieS

0 <« 0+ v
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Momentum ||

@ Esssentially what we do is

0 < 60 — n(current sub-gradient)
—am(prev. sub-gradient)
—a’n(prev. prev. sub-gradient) — - - -

@ There are some reasons why doing so can improve
the convergence speed, though details are not
discussed here
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AdaGrad |

@ Scaling learning rates inversely proportional to the
square root of sum of past gradient squares (Duchi

et al., 2011)
e Update rule:

0
g « -+ VeZé’Hy Z)

|f;‘ ii€S
r < r+ é{ (:) é{
€
0 «— 60—
\/7+5®g

@ r: sum of past gradient squares
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AdaGrad Il

€ and ¢ are given constants

@ ®: Hadamard product (element-wise product of two
vectors/matrices)

o A large g component
= a larger r component
= fast decrease of the learning rate
e Conceptual explanation from Duchi et al. (2011):

o frequently occurring features = low learning
rates
o infrequent features = high learning rates
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Adaptive learning rate

AdaGrad IlI

“the intuition is that each time an infrequent
feature is seen, the learner should take notice.”

@ But how is this explanation related to g
components?

@ Let's consider linear classification. Recall our
optimization problem is

MV-T.VV

/
—+ C;&(W;ynxf)
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AdaGrad IV

@ For methods such as SVM or logistic regression, the
loss function can be written as a function of w’x

E(wiy, x) =é(w'x)

Then the gradient is
I
w+ C Z &(w'x;)x;
i=1

@ Thus the gradient is related to the density of

features
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AdaGrad V

@ The above analysis is for linear classification
@ But now we have a non-convex neural network!

@ Empirically, people find that the sum of squared
gradient since the beginning causes too fast
decrease of the learning rate
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RMSProp |

@ The original reference seems to be the lecture slides
at https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf

@ ldea: they think AdaGrad’s learning rate may be too
small before reaching a locally convex region

@ That is, OK to sum all past gradient squares in
convex, but not non-convex

@ Thus they do “exponentially weighted moving
average”
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RMSProp |l

e Update rule

r < pr+(l-plgog
0 «— 60— ©g

O+ r

@ AdaGrad:

r < r+gog

€
0 0 —
< Vr+9

©g
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RMSProp Il

@ Somehow the setting is a bit heuristic and the
reason behind the change (from AdaGrad to
RMSProp) is not really that strong
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ADAM (Adaptlve Moments) |

@ The update rule (Kingma and Ba, 2015)
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ADAM (Adaptive Moments)

@ t is the current iteration index
@ Roughly speaking, ADAM is the combination of

o Momentum
o RMSprop

@ From Goodfellow et al. (2016),

€
NG

(i.e., the use of momentum combined with
rescaling) “does not have a clear theoretical

motivation”
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ADAM (Adaptive Moments) Il

@ The two steps

S

>

<—

1—pf
r

~>

%

t

1 —p;

are called “bias correction”
e Why “bias correction”?
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ADAM (Adaptive Moments) IV

@ They hope that

Els:] = E[g.]

and
Elr:] = Elg, © g4,

where t is the iteration index
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ADAM (Adaptive Moments) V

@ For s;, we have

St = piSt-1+ (1 - Pl)gt
= pi(prse2o+ (1 —p1)g: 1) + (1 —p1)8:

t
= (1—p)) n'e
i=1

We assume that s is initialized as 0
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ADAM (Adaptive Moments) VI
@ Then

Els]] = E[(1-p1) Z gl

= Elg](1-p1) Zpii

@ Note that we assume

are the same
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ADAM (Adaptive Moments) VII

@ Next,
t
(1=p)> p"
i=1
=1 —p)(T+--+pi )
=1—pji
@ Thus
Els] = E[g (1 — p})
and they do
5+ S
1—p}
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ADAM (Adaptive Moments) VIII

@ The above derivation on bias correction partially
follows from https://towardsdatascience.com/
adam-latest-trends-in-deep-learning-optimiz

@ The situation for E[g, ® g,] is similar

@ How about ADAM's practical performance?

e From Goodfellow et al. (2016), “generally regarded
as being fairly robust to the choice of
hyperparmeters, though the learning rate may need
to be changed from the default”
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ADAM (Adaptive Moments) IX

@ However, from the web page we referred to for
deriving the bias correction, “The original paper ...
showing huge performance gains in terms of speed
of training. However, after a while people started
noticing, that in some cases Adam actually finds
worse solution than stochastic gradient”

@ One example of showing the above is Wilson et al.
(2017)
@ We may do some experiments later
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Choosing Stochastic Gradient Algorithms

@ From Goodfellow et al. (2016), “there is currently
no consensus”

@ Further, “the choice ... seemed to depend on the
user's familarity with the algorithm”

@ This isn't very good. Can we have some systematic
investigation?
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Why Stochastic Gradient Widely Used? |

@ The special property of data classification is
essential

14

1 . .
E(Ves(0iy.2) = 7Vo ) &6y, Z)
i=1

Indeed stochastic gradient is less used outside
machine learning

@ Easy implementation. It's simpler than methods
using, for example, second derivative

e Non-convexity plays a role
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Why Stochastic Gradient Widely Used? I

e For convex, other methods are efficient to find
the global minimum

o But for non-convex, efficiency to reach a
stationary point is less useful

o A global minimum usually gives a good model
(loss minimized), but for a stationary point we
are less sure

@ All these explain why SG is popular for deep learning

@ What are your opinions? Any other reasons you can
think of
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Issues of Stochastic Gradient |

We have shown several variants

Don't you think some settings are a bit ad hoc?

There are reasons behind each change. But some
are just heuristic

@ Can we try a paradigm completely different?

@ But before that we need some first-hand experiences
and know implementation details.
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