Robustness of Newton Methods and
Running Time Analysis

Last updated: June 8, 2020

. S L

]
Tensorflow Problem |

@ Some pointed out that if no LM method, the Python
code sometimes failed on department’s servers

@ Turns out this is not an issue of our code, but may
be a problem of Tensorflow

@ It is very good that someone identified the probable
cause and submitted a bug report to Tensorflow
people

. G))

R
General Comments |

@ Some just show numbers/figures and their
experimental settings

@ But you need to give analysis and observations

. S B

-
Newton Running Time Analysis |

@ For this part we would like to check if you
understand some contents of our lectures

@ Unfortunately some didn't even know what the
problem is

@ We are running the same algorithm. Only
implementation on Gauss-Newton matrix-vector
products are different

@ Thus # iterations and # CGs should be almost the
same

@ In the log | checked (see linkl and link2), # CGs are

. G

https://www.csie.ntu.edu.tw/~d07944009/Jacobian_comparison/Newton_with_Jacobian/file51.html
https://www.csie.ntu.edu.tw/~d07944009/Jacobian_comparison/Newton_without_Jacobian/file55.html

-
Newton Running Time Analysis Il

176 and 177

@ Because function and gradient evaluations are the
same, all we need to newly analyze is the CG time

@ Thus checking total time isn't very useful
@ Now let's focus on CG
@ Theoretical ratio

54# CG
3nL+1 + 2# CG

@ In my case, this ratio is

. oG A B

-
Newton Running Time Analysis Il

2.30
e For timing, | got
e Jacobian stored:

e 14s for construction
o 24s for products

e Jacobian not stored:
e 56s for products
@ So 24s and 56s would be the focus
@ The ratio is
2.33

. S 6

-
Newton Running Time Analysis IV

@ Some may then say the practical running time is
consistent with theoretical analysis

@ But this isn't the case

@ Among the 24s, 8.8s for
p = sum(reshape(net.dzdS{m}, d*ab, nL,
[1) .* reshape(p, d*ab, 1, [1),1);
5.5s for
u_m = reshape(net.dzdS{m}, [],
nL*num_data) .* Jv’;

@ Such new bottlenecks are what | hope you can point
out

. T

-
Newton Running Time Analysis V

@ The reason is if without them, then the
implementation of not storing Jacobian should be
even faster (as we don't have problems of matrix
expansion or accumarray here)

@ For the line

p = sum(reshape(net.dzdS{m}, d*ab, nL,
[1) .* reshape(p, d*ab, 1, [1),1);

let's check the following our course slides

. S) B

N
From Course Slides |

o To get
ozH11 m,1
8vec(5"’=1)Tp
; ;
8ZL+1,/ m.l

7

8vec(5’"v’)Tp
we need / matrix-vector products

@ There is no good way to transform it to
matrix-matrix operations

. S 6

N
From Course Slides I

@ At this moment we calculate

8ZL+1,i

TV w5y

mii=1,...,1. (1)

by summing up all rows of the following matrix

Ozt DzLrLi
Avec(S™)) dvec(S™) ®

1
dmt any bgg)nv XNy

m,i m,i

’]
p 1 -
dmt agénv bggnv XN

p

and extend this to cover all instances together

N
Newton versus SG: Presentation |

@ It is better to give figures showing time versus
accuracy

@ Some give a table listing
accuracy and time

@ But a problem is when to terminate the
optimization procedure

@ In fact this is an important issue in deep learning
training

e By a figure we can more clearly see the trend

R
Newton versus SG: Performance |

@ Most of you found that SG diverges if the learning
rate is too large

@ This is right

@ Selecting the initial learning rate is a painful issue in
using SG

@ However, Newton also has its own problems (not
seen in this project), so it's not widely used yet

@ Lots of research still need to be done

