Robustness of Newton Methods and Running Time Analysis

Last updated: June 8, 2020
Some pointed out that if no LM method, the Python code sometimes failed on department’s servers

Turns out this is not an issue of our code, but may be a problem of Tensorflow

It is very good that someone identified the probable cause and submitted a bug report to Tensorflow people
Some just show numbers/figures and their experimental settings
But you need to give analysis and observations
Newton Running Time Analysis I

- For this part we would like to check if you understand some contents of our lectures.
- Unfortunately some didn’t even know what the problem is.
- We are running the same algorithm. Only implementation on Gauss-Newton matrix-vector products are different.
- Thus \# iterations and \# CGs should be almost the same.
- In the log I checked (see link1 and link2), \# CGs are...
176 and 177

- Because function and gradient evaluations are the same, all we need to newly analyze is the CG time
- Thus checking total time isn’t very useful
- Now let’s focus on CG
- Theoretical ratio

\[
\frac{5 \# \text{CG}}{3n_{L+1} + 2 \# \text{CG}}
\]

- In my case, this ratio is
Newton Running Time Analysis III

2.30

- For timing, I got
 - Jacobian stored:
 - 14s for construction
 - 24s for products
 - Jacobian not stored:
 - 56s for products
- So 24s and 56s would be the focus
- The ratio is 2.33
Some may then say the practical running time is consistent with theoretical analysis.
But this isn’t the case.
Among the 24s, 8.8s for
\[p = \text{sum}(\text{reshape}(\text{net.dzdS}\{m\}, d*ab, nL, [])) .* \text{reshape}(p, d*ab, 1, []), 1); \]
5.5s for
\[u_m = \text{reshape}(\text{net.dzdS}\{m\}, [], nL*\text{num_data}) .* Jv'; \]
Such new bottlenecks are what I hope you can point out.
The reason is if without them, then the implementation of not storing Jacobian should be even faster (as we don’t have problems of matrix expansion or accumarray here).

For the line

\[p = \text{sum}(\text{reshape}(\text{net}.\text{dzdS}\{m\}, \text{d*ab}, \text{nL}, [])) \ast \text{reshape}(p, \text{d*ab}, 1, []), 1); \]

let’s check the following our course slides.
To get

\[
\begin{bmatrix}
\frac{\partial z^{L+1,1}}{\partial \text{vec}(S^{m,1})^T} p^{m,1} \\
\vdots \\
\frac{\partial z^{L+1,l}}{\partial \text{vec}(S^{m,l})^T} p^{m,l}
\end{bmatrix},
\]

we need \(l\) matrix-vector products

There is no good way to transform it to matrix-matrix operations
At this moment we calculate

\[J^{m,i} v^m = \frac{\partial z^{L+1,i}}{\partial \text{vec}(S^{m,i})^T} p^{m,i}, \quad i = 1, \ldots, l. \quad (1) \]

by summing up all rows of the following matrix

\[
\begin{bmatrix}
\frac{\partial z^{L+1,1}}{\partial \text{vec}(S^{m,1})} & \cdots & \frac{\partial z^{L+1,n_{L+1}}}{\partial \text{vec}(S^{m,n_{L+1}})}
\end{bmatrix}
\begin{bmatrix}
p^{m,1} & \cdots & p^{m,n_{L+1}}
\end{bmatrix}
\cdot d^{m+1} a^m_{\text{conv}} b^m_{\text{conv}} \times n_{L+1}.
\]

and extend this to cover all instances together
It is better to give figures showing time versus accuracy.

Some give a table listing accuracy and time.

But a problem is when to terminate the optimization procedure.

In fact this is an important issue in deep learning training.

By a figure we can more clearly see the trend.
Newton versus SG: Performance I

- Most of you found that SG diverges if the learning rate is too large
- This is right
- Selecting the initial learning rate is a painful issue in using SG
- However, Newton also has its own problems (not seen in this project), so it’s not widely used yet
- Lots of research still need to be done