
Robustness of Newton Methods and
Running Time Analysis

Last updated: June 8, 2020

June 8, 2020 1 / 12



Tensorflow Problem I

Some pointed out that if no LM method, the Python
code sometimes failed on department’s servers

Turns out this is not an issue of our code, but may
be a problem of Tensorflow

It is very good that someone identified the probable
cause and submitted a bug report to Tensorflow
people

June 8, 2020 2 / 12



General Comments I

Some just show numbers/figures and their
experimental settings

But you need to give analysis and observations

June 8, 2020 3 / 12



Newton Running Time Analysis I

For this part we would like to check if you
understand some contents of our lectures

Unfortunately some didn’t even know what the
problem is

We are running the same algorithm. Only
implementation on Gauss-Newton matrix-vector
products are different

Thus # iterations and # CGs should be almost the
same

In the log I checked (see link1 and link2), # CGs are

June 8, 2020 4 / 12

https://www.csie.ntu.edu.tw/~d07944009/Jacobian_comparison/Newton_with_Jacobian/file51.html
https://www.csie.ntu.edu.tw/~d07944009/Jacobian_comparison/Newton_without_Jacobian/file55.html


Newton Running Time Analysis II

176 and 177

Because function and gradient evaluations are the
same, all we need to newly analyze is the CG time

Thus checking total time isn’t very useful

Now let’s focus on CG

Theoretical ratio

5# CG

3nL+1 + 2# CG

In my case, this ratio is

June 8, 2020 5 / 12



Newton Running Time Analysis III

2.30

For timing, I got

Jacobian stored:

14s for construction
24s for products

Jacobian not stored:

56s for products

So 24s and 56s would be the focus

The ratio is

2.33

June 8, 2020 6 / 12



Newton Running Time Analysis IV

Some may then say the practical running time is
consistent with theoretical analysis

But this isn’t the case

Among the 24s, 8.8s for

p = sum(reshape(net.dzdS{m}, d*ab, nL,

[]) .* reshape(p, d*ab, 1, []),1);

5.5s for

u_m = reshape(net.dzdS{m}, [],

nL*num_data) .* Jv’;

Such new bottlenecks are what I hope you can point
out

June 8, 2020 7 / 12



Newton Running Time Analysis V

The reason is if without them, then the
implementation of not storing Jacobian should be
even faster (as we don’t have problems of matrix
expansion or accumarray here)

For the line

p = sum(reshape(net.dzdS{m}, d*ab, nL,

[]) .* reshape(p, d*ab, 1, []),1);

let’s check the following our course slides

June 8, 2020 8 / 12



From Course Slides I

To get 
∂zL+1,1

∂vec(Sm,1)T p
m,1

...
∂zL+1,l

∂vec(Sm,l)T p
m,l

 ,

we need l matrix-vector products

There is no good way to transform it to
matrix-matrix operations

June 8, 2020 9 / 12



From Course Slides II

At this moment we calculate

Jm,i
v
m =

∂zL+1,i

∂vec(Sm,i)T
p
m,i , i = 1, . . . , l . (1)

by summing up all rows of the following matrix[
∂zL+1,i

1

∂vec(Sm,i)
· · ·

∂zL+1,i
nL+1

∂vec(Sm,i)

]
dm+1amconvb

m
conv×nL+1

�[
p
m,i · · ·pm,i

]
dm+1amconvb

m
conv×nL+1

.

and extend this to cover all instances together
June 8, 2020 10 / 12



Newton versus SG: Presentation I

It is better to give figures showing time versus
accuracy

Some give a table listing

accuracy and time

But a problem is when to terminate the
optimization procedure

In fact this is an important issue in deep learning
training

By a figure we can more clearly see the trend

June 8, 2020 11 / 12



Newton versus SG: Performance I

Most of you found that SG diverges if the learning
rate is too large

This is right

Selecting the initial learning rate is a painful issue in
using SG

However, Newton also has its own problems (not
seen in this project), so it’s not widely used yet

Lots of research still need to be done

June 8, 2020 12 / 12


