
Discussion on the Project of Making the
MATLAB Implementation Competitive

with Tensorflow

Last updated: June 1, 2020

June 1, 2020 1 / 12

Matrix Expansion and accumarray I

From project 3, we know their complexity is
relatively smaller than matrix-matrix products

However, they are among the bottlenecks

From project 4, we provide a MATLAB-C interface
for matrix expansion

Some simply apply it and check the running time
reduction

But we did mention that you should try to reduce
the time of other parts, in particular, accumarray

June 1, 2020 2 / 12

Matrix Expansion and accumarray II

Therefore, those who apply only the matrix
expansion code get lower points because others
have paid more efforts on this project.

June 1, 2020 3 / 12

The accumarray Implementation I

Most of you figured out that the code is extremely
simple

for(mwSize i = 0; i < m; i++)

vTPp[int(subsp[i]) - 1] += valp[i];

However, an issue is that some threads may try to
update the same address

See our example before

(Pm
φ)Tv i = [v1 v2 + v5 v6 v3 v4 + v7 v8]T ,

(1)

June 1, 2020 4 / 12

The accumarray Implementation II

We need to specify that the update is an atomic
operation:

for(mwSize i = 0; i < m; i++)

#pragma omp atomic

vTPp[int(subsp[i]) - 1] += valp[i];

Some are excellent to figure this out

On the other hand, we do accumarray on multiple
instances in one call

June 1, 2020 5 / 12

The accumarray Implementation III

Recall that in the earlier discussion we prepared
indices in different ranges: for given indices[

1 2 4 5 2 3 5 6
]T

(2)

We can apply MATLAB’s accumarray on the vectorv 1

...
v
l

 , (3)

June 1, 2020 6 / 12

The accumarray Implementation IV

by giving the following indices as the input.
(2)

(2) + ampadb
m
padd

m1hmhmdmamconvb
m
conv

(2) + 2ampadb
m
padd

m1hmhmdmamconvb
m
conv

...
(2) + (l − 1)ampadb

m
padd

m1hmhmdmamconvb
m
conv

 , (4)

where

ampadb
m
padd

m is the size of pad(Zm,i)

June 1, 2020 7 / 12

The accumarray Implementation V

and

hmhmdmamconvb
m
conv is the size of φ(pad(Zm,i)) and v i .

Then we can do a two-level loop, where the first one
is on instances

Then we can parallelize the outer loop without
needing atomic operations

Some are good to try such an approach

Our TAs have conducted a comparison on a clean
machine

June 1, 2020 8 / 12

The accumarray Implementation VI

Average of 10 runs on the full set of mnist

1-level loop: 36.68 seconds

2-level loop: 14.55 seconds

Clearly the use of a 2-level loop is much better

It’s unclear why this happens, but atomic operations
might be a reason.

We add atomic in the 2-level loop, and the running
time is increased to 36.75 seconds

June 1, 2020 9 / 12

Change of SimpleNN I

You might notice that recently simpleNN MATLAB
code was updated a few times

The changes were for the second part of project 6

Unfortunately the running time of SG part was
affected

Due to some unsuitable changes, SG code in some
versions becomes slower

This is fine as we don’t evaluate you on how close
your timing result is to Tensorflow’s.

June 1, 2020 10 / 12

Change of SimpleNN II

We check on what you really have done, in
particular, the respective improvement of matrix
expansion and accumarray

If we think from the viewpoint of a regular course,
the tool used for a HW shouldn’t be constantly
changed

But ours is not a regular one. For a research
oriented course, this is what it should be – we
constantly research and improve the tool

June 1, 2020 11 / 12

Change of SimpleNN III

I want to take this chance to say again that to take
a course like ours, the mindset may need to be
different

By the way, for project 6, please git pull the latest
code

June 1, 2020 12 / 12

